1444. Number of Ways of Cutting a Pizza
Problem Description
You have a rectangular pizza represented as a rows x cols
matrix. Each cell in the matrix contains either:
'A'
representing an apple'.'
representing an empty cell
Given an integer k
, you need to cut the pizza into exactly k
pieces using k-1
cuts.
Cutting Rules:
- Each cut must be either vertical or horizontal
- Cuts are made at cell boundaries (between cells)
- When making a horizontal cut, you give away the upper portion of the pizza
- When making a vertical cut, you give away the left portion of the pizza
- The last remaining piece goes to the last person
Constraint: Each piece of pizza must contain at least one apple.
The problem asks you to find the total number of ways to cut the pizza such that every piece has at least one apple. Since the answer can be very large, return the result modulo 10^9 + 7
.
Example Visualization: If you have a 3x3 pizza and need to make 2 cuts (creating 3 pieces):
- First cut could be horizontal at row 1, giving away the top portion
- Second cut could be vertical at column 1 of the remaining pizza, giving away the left portion
- The final remaining piece is the last piece
Each cutting sequence that ensures all pieces have apples counts as one valid way.
Intuition
When we need to cut the pizza into k
pieces with k-1
cuts, we can think of this as a recursive problem. After making the first cut, we're left with a smaller rectangle that needs to be cut into k-1
pieces with k-2
cuts.
The key insight is that we can work with the remaining rectangle after each cut. When we make a cut:
- A horizontal cut at row
x
means we give away the rectangle from rowi
to rowx-1
, and continue working with the rectangle from rowx
to the bottom - A vertical cut at column
y
means we give away the rectangle from columnj
to columny-1
, and continue working with the rectangle from columny
to the right
This naturally leads to a recursive approach where we track:
- The top-left corner
(i, j)
of our current working rectangle - The number of remaining cuts
k
we need to make
For each state (i, j, k)
, we try all possible positions for the next cut, but only if the piece we're giving away contains at least one apple.
The challenge is efficiently checking if a sub-rectangle contains apples. Checking every cell would be too slow. This is where 2D prefix sums come in - they allow us to calculate the number of apples in any rectangle in O(1)
time.
With a 2D prefix sum array s[i][j]
representing the total apples in the rectangle from (0,0)
to (i-1,j-1)
, we can find the apples in any sub-rectangle (r1,c1)
to (r2,c2)
using:
apples = s[r2+1][c2+1] - s[r1][c2+1] - s[r2+1][c1] + s[r1][c1]
Since we'll revisit the same states multiple times (same remaining rectangle with same number of cuts left), memoization helps avoid redundant calculations, making the solution efficient.
Learn more about Memoization, Dynamic Programming and Prefix Sum patterns.
Solution Approach
The solution uses 2D Prefix Sum combined with Memoized Search (Dynamic Programming) to efficiently solve the problem.
Building the 2D Prefix Sum Array
First, we construct a 2D prefix sum array s
where s[i][j]
represents the total number of apples in the rectangle from (0,0)
to (i-1,j-1)
.
The prefix sum is calculated using the inclusion-exclusion principle:
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + (pizza[i-1][j-1] == 'A')
This allows us to query the number of apples in any sub-rectangle in O(1)
time using:
apples in rectangle (r1,c1) to (r2,c2) = s[r2][c2] - s[r1][c2] - s[r2][c1] + s[r1][c1]
Recursive Function with Memoization
We define dfs(i, j, k)
which returns the number of ways to cut the rectangle from (i, j)
to (m-1, n-1)
using k
cuts.
Base Case: When k = 0
(no more cuts needed):
- Check if the current rectangle contains at least one apple
- Return
1
if it does,0
otherwise - The apple count is:
s[m][n] - s[i][n] - s[m][j] + s[i][j]
Recursive Case: When k > 0
:
-
Try horizontal cuts at positions
x
wherei < x < m
:- Check if the upper piece
(i,j)
to(x-1,n-1)
has apples:s[x][n] - s[i][n] - s[x][j] + s[i][j] > 0
- If yes, recursively solve for the remaining rectangle:
dfs(x, j, k-1)
- Check if the upper piece
-
Try vertical cuts at positions
y
wherej < y < n
:- Check if the left piece
(i,j)
to(m-1,y-1)
has apples:s[m][y] - s[i][y] - s[m][j] + s[i][j] > 0
- If yes, recursively solve for the remaining rectangle:
dfs(i, y, k-1)
- Check if the left piece
-
Sum all valid ways and return the result modulo
10^9 + 7
Implementation Details
- The
@cache
decorator automatically memoizes the recursive function, avoiding redundant calculations - We start with
dfs(0, 0, k-1)
since we needk-1
cuts to createk
pieces - The prefix sum array has dimensions
(m+1) × (n+1)
for easier boundary handling - Time Complexity:
O(m × n × k × (m + n))
- for each state(i,j,k)
, we tryO(m+n)
cutting positions - Space Complexity:
O(m × n × k)
for the memoization cache
Ready to land your dream job?
Unlock your dream job with a 3-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a small example with a 3×3 pizza that needs to be cut into 3 pieces (requiring 2 cuts):
Pizza: Prefix Sum Array s: A . A 0 0 0 0 . A . 0 1 1 2 A . . 0 1 2 3 0 2 3 4
Step 1: Build the 2D Prefix Sum
s[1][1] = 1
(one apple at position [0][0])s[2][2] = 2
(two apples in rectangle from [0][0] to [1][1])s[3][3] = 4
(total apples in entire pizza)
Step 2: Start Recursive Search with dfs(0, 0, 2)
We need to make our first cut. Let's explore the options:
Horizontal Cuts:
-
Cut at row 1: Give away row 0, keep rows 1-2
- Check apples in row 0:
s[1][3] - s[0][3] - s[1][0] + s[0][0] = 2 - 0 - 0 + 0 = 2
✓ - Recurse:
dfs(1, 0, 1)
(work with rows 1-2, need 1 more cut)
- Check apples in row 0:
-
Cut at row 2: Give away rows 0-1, keep row 2
- Check apples in rows 0-1:
s[2][3] - s[0][3] - s[2][0] + s[0][0] = 3 - 0 - 0 + 0 = 3
✓ - Recurse:
dfs(2, 0, 1)
(work with row 2, need 1 more cut)
- Check apples in rows 0-1:
Vertical Cuts:
- Cut at column 1: Give away column 0, keep columns 1-2
- Check apples in column 0:
s[3][1] - s[0][1] - s[3][0] + s[0][0] = 2 - 0 - 0 + 0 = 2
✓ - Recurse:
dfs(0, 1, 1)
(work with columns 1-2, need 1 more cut)
- Check apples in column 0:
Step 3: Continue Recursion (example path: horizontal cut at row 1)
From dfs(1, 0, 1)
(working with rows 1-2, columns 0-2):
Horizontal Cut:
- Cut at row 2: Give away row 1, keep row 2
- Check apples in row 1:
s[2][3] - s[1][3] - s[2][0] + s[1][0] = 3 - 2 - 0 + 0 = 1
✓ - Recurse:
dfs(2, 0, 0)
(final piece: row 2)
- Check apples in row 1:
Vertical Cuts:
- Cut at column 1: Give away column 0 of rows 1-2
- Check apples:
s[3][1] - s[1][1] - s[3][0] + s[1][0] = 2 - 1 - 0 + 0 = 1
✓ - Recurse:
dfs(1, 1, 0)
(final piece: rows 1-2, columns 1-2)
- Check apples:
Step 4: Base Case (k=0)
For dfs(2, 0, 0)
:
- Check if final piece (row 2, all columns) has apples
- Apples =
s[3][3] - s[2][3] - s[3][0] + s[2][0] = 4 - 3 - 0 + 0 = 1
✓ - Return 1 (valid way)
Step 5: Aggregate Results
The function backtracks, summing all valid paths. Each valid cutting sequence where all pieces contain at least one apple contributes 1 to the final count.
The key efficiency comes from:
- O(1) apple checking using prefix sums instead of O(m×n) scanning
- Memoization preventing recalculation of identical subproblems (same rectangle with same cuts remaining)
Solution Implementation
1class Solution:
2 def ways(self, pizza: List[str], k: int) -> int:
3 MOD = 10**9 + 7
4 rows, cols = len(pizza), len(pizza[0])
5
6 # Build 2D prefix sum array to quickly calculate apples in any rectangle
7 # prefix_sum[i][j] represents total apples in rectangle from (0,0) to (i-1,j-1)
8 prefix_sum = [[0] * (cols + 1) for _ in range(rows + 1)]
9 for row in range(1, rows + 1):
10 for col in range(1, cols + 1):
11 # Add current cell value (1 if apple, 0 otherwise)
12 # Use inclusion-exclusion principle for 2D prefix sum
13 prefix_sum[row][col] = (prefix_sum[row - 1][col] +
14 prefix_sum[row][col - 1] -
15 prefix_sum[row - 1][col - 1] +
16 int(pizza[row - 1][col - 1] == 'A'))
17
18 @cache
19 def count_ways(top_row: int, left_col: int, cuts_remaining: int) -> int:
20 # Base case: no more cuts needed
21 if cuts_remaining == 0:
22 # Check if remaining piece has at least one apple
23 # Calculate apples in rectangle from (top_row, left_col) to (rows-1, cols-1)
24 apples_in_piece = (prefix_sum[rows][cols] -
25 prefix_sum[top_row][cols] -
26 prefix_sum[rows][left_col] +
27 prefix_sum[top_row][left_col])
28 return 1 if apples_in_piece > 0 else 0
29
30 total_ways = 0
31
32 # Try horizontal cuts - give away top portion
33 for cut_row in range(top_row + 1, rows):
34 # Check if top piece (from top_row to cut_row-1) has at least one apple
35 apples_in_top = (prefix_sum[cut_row][cols] -
36 prefix_sum[top_row][cols] -
37 prefix_sum[cut_row][left_col] +
38 prefix_sum[top_row][left_col])
39 if apples_in_top > 0:
40 # Recursively process remaining bottom piece
41 total_ways += count_ways(cut_row, left_col, cuts_remaining - 1)
42
43 # Try vertical cuts - give away left portion
44 for cut_col in range(left_col + 1, cols):
45 # Check if left piece (from left_col to cut_col-1) has at least one apple
46 apples_in_left = (prefix_sum[rows][cut_col] -
47 prefix_sum[top_row][cut_col] -
48 prefix_sum[rows][left_col] +
49 prefix_sum[top_row][left_col])
50 if apples_in_left > 0:
51 # Recursively process remaining right piece
52 total_ways += count_ways(top_row, cut_col, cuts_remaining - 1)
53
54 return total_ways % MOD
55
56 # Start with full pizza (0,0) and need to make k-1 cuts to get k pieces
57 return count_ways(0, 0, k - 1)
58
1class Solution {
2 private int rows;
3 private int cols;
4 private int[][] prefixSum; // 2D prefix sum array for counting apples
5 private Integer[][][] memo; // Memoization array for dynamic programming
6 private final int MOD = (int) 1e9 + 7;
7
8 public int ways(String[] pizza, int k) {
9 rows = pizza.length;
10 cols = pizza[0].length();
11
12 // Initialize prefix sum array with extra row and column for easier calculation
13 prefixSum = new int[rows + 1][cols + 1];
14
15 // Initialize memoization array for DP
16 memo = new Integer[rows][cols][k];
17
18 // Build 2D prefix sum array
19 // prefixSum[i][j] represents the total number of apples in rectangle from (0,0) to (i-1,j-1)
20 for (int i = 1; i <= rows; i++) {
21 for (int j = 1; j <= cols; j++) {
22 int currentApple = pizza[i - 1].charAt(j - 1) == 'A' ? 1 : 0;
23 // Using inclusion-exclusion principle for 2D prefix sum
24 prefixSum[i][j] = prefixSum[i - 1][j] + prefixSum[i][j - 1]
25 - prefixSum[i - 1][j - 1] + currentApple;
26 }
27 }
28
29 // Start DFS from top-left corner with k-1 cuts remaining
30 return dfs(0, 0, k - 1);
31 }
32
33 private int dfs(int startRow, int startCol, int cutsRemaining) {
34 // Base case: no more cuts needed
35 if (cutsRemaining == 0) {
36 // Check if the remaining piece has at least one apple
37 int applesInRemainingPiece = prefixSum[rows][cols] - prefixSum[startRow][cols]
38 - prefixSum[rows][startCol] + prefixSum[startRow][startCol];
39 return applesInRemainingPiece > 0 ? 1 : 0;
40 }
41
42 // Check memoization
43 if (memo[startRow][startCol][cutsRemaining] != null) {
44 return memo[startRow][startCol][cutsRemaining];
45 }
46
47 int totalWays = 0;
48
49 // Try horizontal cuts (cutting between row x-1 and row x)
50 for (int cutRow = startRow + 1; cutRow < rows; cutRow++) {
51 // Calculate apples in the upper piece (from startRow to cutRow-1)
52 int applesInUpperPiece = prefixSum[cutRow][cols] - prefixSum[startRow][cols]
53 - prefixSum[cutRow][startCol] + prefixSum[startRow][startCol];
54
55 // Only make the cut if upper piece has at least one apple
56 if (applesInUpperPiece > 0) {
57 totalWays = (totalWays + dfs(cutRow, startCol, cutsRemaining - 1)) % MOD;
58 }
59 }
60
61 // Try vertical cuts (cutting between column y-1 and column y)
62 for (int cutCol = startCol + 1; cutCol < cols; cutCol++) {
63 // Calculate apples in the left piece (from startCol to cutCol-1)
64 int applesInLeftPiece = prefixSum[rows][cutCol] - prefixSum[startRow][cutCol]
65 - prefixSum[rows][startCol] + prefixSum[startRow][startCol];
66
67 // Only make the cut if left piece has at least one apple
68 if (applesInLeftPiece > 0) {
69 totalWays = (totalWays + dfs(startRow, cutCol, cutsRemaining - 1)) % MOD;
70 }
71 }
72
73 // Memoize and return the result
74 memo[startRow][startCol][cutsRemaining] = totalWays;
75 return totalWays;
76 }
77}
78
1class Solution {
2public:
3 int ways(vector<string>& pizza, int k) {
4 const int MOD = 1e9 + 7;
5 int rows = pizza.size();
6 int cols = pizza[0].size();
7
8 // dp[i][j][cuts] = number of ways to cut the pizza starting from (i, j) with 'cuts' cuts remaining
9 vector<vector<vector<int>>> dp(rows, vector<vector<int>>(cols, vector<int>(k, -1)));
10
11 // prefixSum[i][j] = number of apples in rectangle from (0, 0) to (i-1, j-1)
12 vector<vector<int>> prefixSum(rows + 1, vector<int>(cols + 1));
13
14 // Build prefix sum array for counting apples in any rectangle
15 for (int i = 1; i <= rows; ++i) {
16 for (int j = 1; j <= cols; ++j) {
17 int hasApple = (pizza[i - 1][j - 1] == 'A') ? 1 : 0;
18 prefixSum[i][j] = prefixSum[i - 1][j] + prefixSum[i][j - 1]
19 - prefixSum[i - 1][j - 1] + hasApple;
20 }
21 }
22
23 // DFS with memoization to find number of ways
24 function<int(int, int, int)> dfs = [&](int startRow, int startCol, int cutsLeft) -> int {
25 // Base case: no more cuts needed
26 if (cutsLeft == 0) {
27 // Check if remaining piece has at least one apple
28 int applesInRemaining = prefixSum[rows][cols] - prefixSum[startRow][cols]
29 - prefixSum[rows][startCol] + prefixSum[startRow][startCol];
30 return (applesInRemaining > 0) ? 1 : 0;
31 }
32
33 // Return memoized result if already calculated
34 if (dp[startRow][startCol][cutsLeft] != -1) {
35 return dp[startRow][startCol][cutsLeft];
36 }
37
38 int totalWays = 0;
39
40 // Try horizontal cuts - cut between row (cutRow-1) and cutRow
41 for (int cutRow = startRow + 1; cutRow < rows; ++cutRow) {
42 // Check if upper piece has at least one apple
43 int applesInUpper = prefixSum[cutRow][cols] - prefixSum[startRow][cols]
44 - prefixSum[cutRow][startCol] + prefixSum[startRow][startCol];
45 if (applesInUpper > 0) {
46 totalWays = (totalWays + dfs(cutRow, startCol, cutsLeft - 1)) % MOD;
47 }
48 }
49
50 // Try vertical cuts - cut between column (cutCol-1) and cutCol
51 for (int cutCol = startCol + 1; cutCol < cols; ++cutCol) {
52 // Check if left piece has at least one apple
53 int applesInLeft = prefixSum[rows][cutCol] - prefixSum[startRow][cutCol]
54 - prefixSum[rows][startCol] + prefixSum[startRow][startCol];
55 if (applesInLeft > 0) {
56 totalWays = (totalWays + dfs(startRow, cutCol, cutsLeft - 1)) % MOD;
57 }
58 }
59
60 // Memoize and return result
61 return dp[startRow][startCol][cutsLeft] = totalWays;
62 };
63
64 // Start from top-left corner with (k-1) cuts to make k pieces
65 return dfs(0, 0, k - 1);
66 }
67};
68
1/**
2 * Calculates the number of ways to cut a pizza into k pieces where each piece contains at least one apple
3 * @param pizza - Array of strings representing the pizza grid where 'A' is apple and '.' is empty
4 * @param k - Number of pieces to cut the pizza into
5 * @returns Number of ways to cut the pizza modulo 10^9 + 7
6 */
7function ways(pizza: string[], k: number): number {
8 const MOD = 1e9 + 7;
9 const rows = pizza.length;
10 const cols = pizza[0].length;
11
12 // Memoization array: memo[row][col][cuts] stores the number of ways to cut from position (row, col) with 'cuts' remaining
13 const memo: number[][][] = new Array(rows)
14 .fill(0)
15 .map(() => new Array(cols)
16 .fill(0)
17 .map(() => new Array(k).fill(-1))
18 );
19
20 // Prefix sum array: prefixSum[i][j] stores the count of apples in rectangle from (0,0) to (i-1,j-1)
21 const prefixSum: number[][] = new Array(rows + 1)
22 .fill(0)
23 .map(() => new Array(cols + 1).fill(0));
24
25 // Build prefix sum array for quick apple count queries
26 for (let row = 1; row <= rows; row++) {
27 for (let col = 1; col <= cols; col++) {
28 const hasApple = pizza[row - 1][col - 1] === 'A' ? 1 : 0;
29 // 2D prefix sum formula: current = top + left - diagonal + current cell
30 prefixSum[row][col] = prefixSum[row - 1][col] +
31 prefixSum[row][col - 1] -
32 prefixSum[row - 1][col - 1] +
33 hasApple;
34 }
35 }
36
37 /**
38 * DFS with memoization to count valid cutting ways
39 * @param startRow - Starting row index for current piece
40 * @param startCol - Starting column index for current piece
41 * @param remainingCuts - Number of cuts still needed
42 * @returns Number of valid ways to cut from this position
43 */
44 const dfs = (startRow: number, startCol: number, remainingCuts: number): number => {
45 // Return memoized result if already computed
46 if (memo[startRow][startCol][remainingCuts] !== -1) {
47 return memo[startRow][startCol][remainingCuts];
48 }
49
50 // Base case: no more cuts needed, check if remaining piece has at least one apple
51 if (remainingCuts === 0) {
52 // Calculate apples in rectangle from (startRow, startCol) to (rows-1, cols-1)
53 const applesInRemainingPiece = prefixSum[rows][cols] -
54 prefixSum[startRow][cols] -
55 prefixSum[rows][startCol] +
56 prefixSum[startRow][startCol];
57 return applesInRemainingPiece > 0 ? 1 : 0;
58 }
59
60 let totalWays = 0;
61
62 // Try horizontal cuts: cut between row (cutRow-1) and cutRow
63 for (let cutRow = startRow + 1; cutRow < rows; cutRow++) {
64 // Check if upper piece has at least one apple
65 const applesInUpperPiece = prefixSum[cutRow][cols] -
66 prefixSum[startRow][cols] -
67 prefixSum[cutRow][startCol] +
68 prefixSum[startRow][startCol];
69 if (applesInUpperPiece > 0) {
70 totalWays = (totalWays + dfs(cutRow, startCol, remainingCuts - 1)) % MOD;
71 }
72 }
73
74 // Try vertical cuts: cut between column (cutCol-1) and cutCol
75 for (let cutCol = startCol + 1; cutCol < cols; cutCol++) {
76 // Check if left piece has at least one apple
77 const applesInLeftPiece = prefixSum[rows][cutCol] -
78 prefixSum[startRow][cutCol] -
79 prefixSum[rows][startCol] +
80 prefixSum[startRow][startCol];
81 if (applesInLeftPiece > 0) {
82 totalWays = (totalWays + dfs(startRow, cutCol, remainingCuts - 1)) % MOD;
83 }
84 }
85
86 // Memoize and return result
87 memo[startRow][startCol][remainingCuts] = totalWays;
88 return totalWays;
89 };
90
91 // Start DFS from top-left corner with k-1 cuts needed (to create k pieces)
92 return dfs(0, 0, k - 1);
93}
94
Time and Space Complexity
Time Complexity: O(k * m * n * (m + n))
The analysis breaks down as follows:
- The DFS function has three parameters:
i
,j
, andk
, wherei
ranges from0
tom-1
,j
ranges from0
ton-1
, andk
ranges from0
tok-1
- Due to memoization with
@cache
, each unique state(i, j, k)
is computed only once, giving usO(m * n * k)
total states - For each state, we iterate through:
- All possible horizontal cuts:
x
fromi+1
tom-1
, which isO(m)
operations - All possible vertical cuts:
y
fromj+1
ton-1
, which isO(n)
operations
- All possible horizontal cuts:
- Each cut involves checking if there's at least one apple in the piece being given away using the prefix sum array, which takes
O(1)
time - Therefore, the total time complexity is
O(m * n * k) * O(m + n) = O(k * m * n * (m + n))
Space Complexity: O(m * n * k + m * n)
The space complexity consists of:
- The prefix sum array
s
:O((m+1) * (n+1)) = O(m * n)
- The memoization cache storing all possible states:
O(m * n * k)
- The recursion call stack depth in the worst case:
O(k)
(when we makek
consecutive cuts) - Since
k ≤ min(m, n)
, the recursion stack is dominated by the cache space - Total space complexity:
O(m * n * k + m * n) = O(m * n * k)
whenk > 1
, orO(m * n)
whenk = 1
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrect Prefix Sum Calculation for Rectangle Queries
One of the most common mistakes is incorrectly calculating the number of apples in a sub-rectangle using the prefix sum array. The formula uses inclusion-exclusion principle, and it's easy to mix up the indices or signs.
Incorrect Implementation:
# Wrong: Using wrong indices or forgetting to add/subtract terms apples = prefix_sum[r2][c2] - prefix_sum[r1][c2] - prefix_sum[r2][c1] # Missing + prefix_sum[r1][c1] # Or apples = prefix_sum[r2+1][c2+1] - prefix_sum[r1][c2+1] - prefix_sum[r2+1][c1] + prefix_sum[r1][c1] # Wrong indices
Correct Implementation:
# For rectangle from (r1, c1) to (r2, c2) inclusive: apples = prefix_sum[r2+1][c2+1] - prefix_sum[r1][c2+1] - prefix_sum[r2+1][c1] + prefix_sum[r1][c1]
2. Off-by-One Errors in Cut Positions
Another frequent mistake is confusion about what portion of the pizza is being given away and what remains after a cut.
Incorrect Understanding:
# Wrong: Thinking cut_row is the last row we keep
for cut_row in range(top_row + 1, rows + 1): # Wrong upper bound
# Checking wrong piece for apples
apples_in_bottom = ... # Should check top piece that's given away
Correct Understanding:
- For a horizontal cut at position
cut_row
, we give away rows fromtop_row
tocut_row-1
- The remaining piece starts from row
cut_row
- Similar logic applies to vertical cuts with columns
3. Forgetting the Modulo Operation
The problem requires returning the answer modulo 10^9 + 7, but it's easy to forget applying modulo at the right places.
Problematic Code:
def count_ways(top_row, left_col, cuts_remaining):
# ... calculation ...
total_ways += count_ways(cut_row, left_col, cuts_remaining - 1)
# ... more additions ...
return total_ways # Forgot modulo - can cause integer overflow in other languages
Better Approach:
def count_ways(top_row, left_col, cuts_remaining):
# ... calculation ...
total_ways = (total_ways + count_ways(cut_row, left_col, cuts_remaining - 1)) % MOD
# Or apply modulo once at the end of the function
return total_ways % MOD
4. Misunderstanding the Number of Cuts vs Pieces
A subtle but critical error is confusing the relationship between cuts and pieces.
Wrong:
# Starting with k cuts instead of k-1 return count_ways(0, 0, k) # Wrong: k cuts would create k+1 pieces
Correct:
# k pieces require k-1 cuts return count_ways(0, 0, k - 1)
5. Not Checking if Given-Away Piece Has Apples
Some implementations forget to verify that the piece being given away contains at least one apple before making the cut.
Incomplete Solution:
for cut_row in range(top_row + 1, rows):
# Missing check for apples in the piece being given away
total_ways += count_ways(cut_row, left_col, cuts_remaining - 1)
Complete Solution:
for cut_row in range(top_row + 1, rows):
apples_in_top = (prefix_sum[cut_row][cols] -
prefix_sum[top_row][cols] -
prefix_sum[cut_row][left_col] +
prefix_sum[top_row][left_col])
if apples_in_top > 0: # Essential check
total_ways += count_ways(cut_row, left_col, cuts_remaining - 1)
Prevention Tips:
- Draw out small examples to verify your prefix sum calculations
- Clearly comment which piece is being given away vs kept
- Test with edge cases where k=1 (no cuts) and k=rows*cols (maximum cuts)
- Verify your understanding of 0-indexed vs 1-indexed coordinates in the prefix sum array
Is the following code DFS or BFS?
void search(Node root) { if (!root) return; visit(root); root.visited = true; for (Node node in root.adjacent) { if (!node.visited) { search(node); } } }
Recommended Readings
Memoization Prereq Backtracking problems backtracking Memoization is a fancy word for a simple concept so is the case for a lot of things we learn in school It means saving the previous function call result in a dictionary and reading from it when we do the exact same call again
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Prefix Sum The prefix sum is an incredibly powerful and straightforward technique Its primary goal is to allow for constant time range sum queries on an array What is Prefix Sum The prefix sum of an array at index i is the sum of all numbers from index 0 to i By
Want a Structured Path to Master System Design Too? Don’t Miss This!