Facebook Pixel

641. Design Circular Deque

Problem Description

This problem asks you to implement a circular double-ended queue (deque) data structure with a fixed maximum capacity.

A deque is a data structure that allows insertion and deletion of elements from both ends (front and rear). The "circular" aspect means the underlying storage wraps around - when you reach the end of the array, the next position is back at the beginning.

You need to implement the MyCircularDeque class with the following operations:

  1. Constructor MyCircularDeque(k): Creates a deque with maximum capacity of k elements.

  2. insertFront(value): Adds an element to the front of the deque. Returns true if successful, false if the deque is full.

  3. insertLast(value): Adds an element to the rear of the deque. Returns true if successful, false if the deque is full.

  4. deleteFront(): Removes the front element. Returns true if successful, false if the deque is empty.

  5. deleteLast(): Removes the rear element. Returns true if successful, false if the deque is empty.

  6. getFront(): Returns the value of the front element, or -1 if the deque is empty.

  7. getRear(): Returns the value of the rear element, or -1 if the deque is empty.

  8. isEmpty(): Returns true if the deque contains no elements, false otherwise.

  9. isFull(): Returns true if the deque has reached its maximum capacity, false otherwise.

The solution uses an array-based implementation with:

  • A fixed-size array q to store elements
  • A front pointer to track the index of the front element
  • A size counter to track the current number of elements
  • The capacity to store the maximum size

The circular nature is handled using modulo arithmetic % capacity to wrap indices around when they exceed the array bounds. When inserting at the front, the front pointer moves backward (with wraparound), and when inserting at the rear, elements are placed at position (front + size) % capacity.

Quick Interview Experience
Help others by sharing your interview experience
Have you seen this problem before?

Intuition

The key insight for implementing a circular deque is to avoid the expensive operation of shifting elements when inserting or deleting from the front. In a regular array, inserting at position 0 would require moving all existing elements one position to the right, which takes O(n) time.

The circular approach solves this by treating the array as if it wraps around - imagine the array bent into a circle where the last position connects back to the first. This way, we can maintain a "logical" front and rear that can be anywhere in the physical array.

We arrive at this solution by recognizing that:

  1. We need fast operations at both ends: Using just a simple array would make front operations expensive. Using a linked list would work but requires extra memory for pointers.

  2. Fixed capacity suggests array usage: Since we know the maximum size upfront, we can allocate a fixed-size array, which is memory-efficient.

  3. Tracking positions with pointers: Instead of moving data, we move pointers. We only need to track where the front element is located (front pointer) and how many elements we have (size). The rear position can always be calculated as (front + size - 1) % capacity.

  4. Modulo arithmetic for wrapping: When we move past the array boundaries, modulo brings us back to the beginning. For example, if front = 0 and we insert at the front, the new front becomes (0 - 1 + capacity) % capacity = capacity - 1, which is the last position in the array.

  5. Size tracking simplifies empty/full checks: Rather than using complex pointer comparisons, we simply track the number of elements. Empty means size == 0, full means size == capacity.

This design ensures all operations run in O(1) time while using O(k) space, where k is the deque's capacity.

Learn more about Queue and Linked List patterns.

Solution Approach

The implementation uses an array-based circular buffer with three key variables to manage the deque state:

Data Structure Setup

  • Array q: Fixed-size array of length k to store elements
  • front: Index pointing to the front element (initialized to 0)
  • size: Current number of elements in the deque (initialized to 0)
  • capacity: Maximum capacity k

Core Operations Implementation

1. insertFront(value)

  • First check if the deque is full using isFull()
  • If not empty, move the front pointer backward: front = (front - 1 + capacity) % capacity
    • Adding capacity before modulo ensures we get a positive result when front - 1 is negative
  • Place the value at the new front position: q[front] = value
  • Increment size by 1

2. insertLast(value)

  • Check if the deque is full
  • Calculate the rear position: idx = (front + size) % capacity
    • This gives us the next empty position after the current last element
  • Place the value at this position: q[idx] = value
  • Increment size by 1

3. deleteFront()

  • Check if the deque is empty using isEmpty()
  • Move the front pointer forward: front = (front + 1) % capacity
  • Decrement size by 1
  • Note: We don't need to clear the old value; it will be overwritten if needed

4. deleteLast()

  • Check if the deque is empty
  • Simply decrement size by 1
  • The rear element becomes inaccessible through the size reduction

5. getFront()

  • Return -1 if empty
  • Otherwise return q[front]

6. getRear()

  • Return -1 if empty
  • Calculate rear position: idx = (front + size - 1) % capacity
    • We subtract 1 because front + size points to the next empty position
  • Return q[idx]

7. isEmpty() and isFull()

  • isEmpty(): Simply check if size == 0
  • isFull(): Check if size == capacity

Example Walkthrough

Consider a deque with capacity 3:

  • Initial state: q = [0, 0, 0], front = 0, size = 0
  • insertLast(1): q = [1, 0, 0], front = 0, size = 1
  • insertFront(2): front becomes (0 - 1 + 3) % 3 = 2, q = [1, 0, 2], size = 2
  • insertLast(3): Insert at (2 + 2) % 3 = 1, q = [1, 3, 2], size = 3
  • The logical order is: [2, 1, 3] with 2 at front (index 2) and 3 at rear (index 1)

This circular approach ensures all operations execute in O(1) time complexity with O(k) space complexity.

Ready to land your dream job?

Unlock your dream job with a 3-minute evaluator for a personalized learning plan!

Start Evaluator

Example Walkthrough

Let's walk through a sequence of operations on a circular deque with capacity 4 to see how the solution works:

Initial State:

  • q = [_, _, _, _] (empty slots)
  • front = 0, size = 0, capacity = 4

Step 1: insertLast(5)

  • Check if full: size (0) < capacity (4)
  • Calculate position: idx = (0 + 0) % 4 = 0
  • Insert value: q[0] = 5
  • Update size: size = 1
  • State: q = [5, _, _, _], front = 0, size = 1

Step 2: insertFront(3)

  • Check if full: size (1) < capacity (4)
  • Move front backward: front = (0 - 1 + 4) % 4 = 3
  • Insert value: q[3] = 3
  • Update size: size = 2
  • State: q = [5, _, _, 3], front = 3, size = 2
  • Logical order: [3, 5]

Step 3: insertFront(7)

  • Check if full: size (2) < capacity (4)
  • Move front backward: front = (3 - 1 + 4) % 4 = 2
  • Insert value: q[2] = 7
  • Update size: size = 3
  • State: q = [5, _, 7, 3], front = 2, size = 3
  • Logical order: [7, 3, 5]

Step 4: insertLast(9)

  • Check if full: size (3) < capacity (4)
  • Calculate position: idx = (2 + 3) % 4 = 1
  • Insert value: q[1] = 9
  • Update size: size = 4
  • State: q = [5, 9, 7, 3], front = 2, size = 4
  • Logical order: [7, 3, 5, 9]

Step 5: getRear()

  • Not empty: size > 0
  • Calculate rear: idx = (2 + 4 - 1) % 4 = 1
  • Return q[1] = 9

Step 6: deleteFront()

  • Not empty: size > 0
  • Move front forward: front = (2 + 1) % 4 = 3
  • Update size: size = 3
  • State: q = [5, 9, 7, 3], front = 3, size = 3
  • Logical order: [3, 5, 9] (7 is no longer accessible)

Step 7: getFront()

  • Not empty: size > 0
  • Return q[3] = 3

This example demonstrates how the circular nature allows efficient insertion at both ends without shifting elements, with the front pointer wrapping around the array using modulo arithmetic.

Solution Implementation

1class MyCircularDeque:
2    def __init__(self, k: int):
3        """
4        Initialize the circular deque with a fixed capacity.
5      
6        Args:
7            k: Maximum capacity of the deque
8        """
9        # Pre-allocate array with fixed size for O(1) operations
10        self.buffer = [0] * k
11        # Index pointing to the front element
12        self.front_index = 0
13        # Current number of elements in the deque
14        self.current_size = 0
15        # Maximum capacity of the deque
16        self.max_capacity = k
17
18    def insertFront(self, value: int) -> bool:
19        """
20        Insert an element at the front of the deque.
21      
22        Args:
23            value: The value to insert
24          
25        Returns:
26            True if insertion was successful, False if deque is full
27        """
28        # Check if deque has space for new element
29        if self.isFull():
30            return False
31      
32        # Move front pointer backward circularly only if deque is not empty
33        # If empty, we insert at current front_index position
34        if not self.isEmpty():
35            self.front_index = (self.front_index - 1 + self.max_capacity) % self.max_capacity
36      
37        # Place the new value at the front position
38        self.buffer[self.front_index] = value
39        # Increment the size counter
40        self.current_size += 1
41        return True
42
43    def insertLast(self, value: int) -> bool:
44        """
45        Insert an element at the rear of the deque.
46      
47        Args:
48            value: The value to insert
49          
50        Returns:
51            True if insertion was successful, False if deque is full
52        """
53        # Check if deque has space for new element
54        if self.isFull():
55            return False
56      
57        # Calculate the rear position using front_index and size
58        rear_index = (self.front_index + self.current_size) % self.max_capacity
59        # Place the new value at the rear position
60        self.buffer[rear_index] = value
61        # Increment the size counter
62        self.current_size += 1
63        return True
64
65    def deleteFront(self) -> bool:
66        """
67        Remove the front element from the deque.
68      
69        Returns:
70            True if deletion was successful, False if deque is empty
71        """
72        # Cannot delete from empty deque
73        if self.isEmpty():
74            return False
75      
76        # Move front pointer forward circularly
77        self.front_index = (self.front_index + 1) % self.max_capacity
78        # Decrement the size counter
79        self.current_size -= 1
80        return True
81
82    def deleteLast(self) -> bool:
83        """
84        Remove the rear element from the deque.
85      
86        Returns:
87            True if deletion was successful, False if deque is empty
88        """
89        # Cannot delete from empty deque
90        if self.isEmpty():
91            return False
92      
93        # Simply decrement size; the rear position is calculated dynamically
94        self.current_size -= 1
95        return True
96
97    def getFront(self) -> int:
98        """
99        Get the value of the front element without removing it.
100      
101        Returns:
102            The front element value, or -1 if deque is empty
103        """
104        # Return -1 for empty deque as per problem specification
105        if self.isEmpty():
106            return -1
107      
108        # Return the element at front_index
109        return self.buffer[self.front_index]
110
111    def getRear(self) -> int:
112        """
113        Get the value of the rear element without removing it.
114      
115        Returns:
116            The rear element value, or -1 if deque is empty
117        """
118        # Return -1 for empty deque as per problem specification
119        if self.isEmpty():
120            return -1
121      
122        # Calculate rear position: front + size - 1 (wrapped around)
123        rear_index = (self.front_index + self.current_size - 1) % self.max_capacity
124        return self.buffer[rear_index]
125
126    def isEmpty(self) -> bool:
127        """
128        Check if the deque is empty.
129      
130        Returns:
131            True if deque contains no elements, False otherwise
132        """
133        return self.current_size == 0
134
135    def isFull(self) -> bool:
136        """
137        Check if the deque is at maximum capacity.
138      
139        Returns:
140            True if deque cannot accept more elements, False otherwise
141        """
142        return self.current_size == self.max_capacity
143
144
145# Your MyCircularDeque object will be instantiated and called as such:
146# obj = MyCircularDeque(k)
147# param_1 = obj.insertFront(value)
148# param_2 = obj.insertLast(value)
149# param_3 = obj.deleteFront()
150# param_4 = obj.deleteLast()
151# param_5 = obj.getFront()
152# param_6 = obj.getRear()
153# param_7 = obj.isEmpty()
154# param_8 = obj.isFull()
155
1class MyCircularDeque {
2    // Array to store deque elements
3    private int[] deque;
4    // Index pointing to the front element
5    private int frontIndex;
6    // Current number of elements in the deque
7    private int currentSize;
8    // Maximum capacity of the deque
9    private int maxCapacity;
10
11    /**
12     * Initialize your data structure here. Set the size of the deque to be k.
13     * @param k The maximum capacity of the circular deque
14     */
15    public MyCircularDeque(int k) {
16        deque = new int[k];
17        frontIndex = 0;
18        currentSize = 0;
19        maxCapacity = k;
20    }
21
22    /**
23     * Adds an item at the front of Deque. Return true if the operation is successful.
24     * @param value The value to be inserted at the front
25     * @return true if insertion is successful, false if deque is full
26     */
27    public boolean insertFront(int value) {
28        // Check if deque is full
29        if (isFull()) {
30            return false;
31        }
32      
33        // Move front pointer backwards only if deque is not empty
34        if (!isEmpty()) {
35            // Circular decrement: move front index one position back
36            frontIndex = (frontIndex - 1 + maxCapacity) % maxCapacity;
37        }
38      
39        // Insert value at new front position
40        deque[frontIndex] = value;
41        currentSize++;
42        return true;
43    }
44
45    /**
46     * Adds an item at the rear of Deque. Return true if the operation is successful.
47     * @param value The value to be inserted at the rear
48     * @return true if insertion is successful, false if deque is full
49     */
50    public boolean insertLast(int value) {
51        // Check if deque is full
52        if (isFull()) {
53            return false;
54        }
55      
56        // Calculate rear position: front + size gives us the next empty slot
57        int rearIndex = (frontIndex + currentSize) % maxCapacity;
58        deque[rearIndex] = value;
59        currentSize++;
60        return true;
61    }
62
63    /**
64     * Deletes an item from the front of Deque. Return true if the operation is successful.
65     * @return true if deletion is successful, false if deque is empty
66     */
67    public boolean deleteFront() {
68        // Check if deque is empty
69        if (isEmpty()) {
70            return false;
71        }
72      
73        // Move front pointer forward (circular increment)
74        frontIndex = (frontIndex + 1) % maxCapacity;
75        currentSize--;
76        return true;
77    }
78
79    /**
80     * Deletes an item from the rear of Deque. Return true if the operation is successful.
81     * @return true if deletion is successful, false if deque is empty
82     */
83    public boolean deleteLast() {
84        // Check if deque is empty
85        if (isEmpty()) {
86            return false;
87        }
88      
89        // Simply decrease size, no need to move pointers
90        currentSize--;
91        return true;
92    }
93
94    /**
95     * Get the front item from the deque.
96     * @return The front element value, or -1 if deque is empty
97     */
98    public int getFront() {
99        if (isEmpty()) {
100            return -1;
101        }
102        return deque[frontIndex];
103    }
104
105    /**
106     * Get the last item from the deque.
107     * @return The rear element value, or -1 if deque is empty
108     */
109    public int getRear() {
110        if (isEmpty()) {
111            return -1;
112        }
113      
114        // Calculate rear position: last element is at (front + size - 1)
115        int rearIndex = (frontIndex + currentSize - 1) % maxCapacity;
116        return deque[rearIndex];
117    }
118
119    /**
120     * Checks whether the circular deque is empty or not.
121     * @return true if deque is empty, false otherwise
122     */
123    public boolean isEmpty() {
124        return currentSize == 0;
125    }
126
127    /**
128     * Checks whether the circular deque is full or not.
129     * @return true if deque is full, false otherwise
130     */
131    public boolean isFull() {
132        return currentSize == maxCapacity;
133    }
134}
135
136/**
137 * Your MyCircularDeque object will be instantiated and called as such:
138 * MyCircularDeque obj = new MyCircularDeque(k);
139 * boolean param_1 = obj.insertFront(value);
140 * boolean param_2 = obj.insertLast(value);
141 * boolean param_3 = obj.deleteFront();
142 * boolean param_4 = obj.deleteLast();
143 * int param_5 = obj.getFront();
144 * int param_6 = obj.getRear();
145 * boolean param_7 = obj.isEmpty();
146 * boolean param_8 = obj.isFull();
147 */
148
1class MyCircularDeque {
2private:
3    vector<int> buffer;      // Fixed-size array to store deque elements
4    int frontIndex;          // Index pointing to the front element
5    int currentSize;         // Current number of elements in the deque
6    int maxCapacity;         // Maximum capacity of the deque
7  
8public:
9    // Constructor: Initialize circular deque with maximum size k
10    MyCircularDeque(int k) {
11        buffer.assign(k, 0);
12        frontIndex = 0;
13        currentSize = 0;
14        maxCapacity = k;
15    }
16  
17    // Insert an element at the front of the deque
18    bool insertFront(int value) {
19        // Check if deque is full
20        if (isFull()) {
21            return false;
22        }
23      
24        // Move front pointer backward circularly (only if deque is not empty)
25        if (!isEmpty()) {
26            frontIndex = (frontIndex - 1 + maxCapacity) % maxCapacity;
27        }
28      
29        // Insert value at new front position
30        buffer[frontIndex] = value;
31        currentSize++;
32        return true;
33    }
34  
35    // Insert an element at the rear of the deque
36    bool insertLast(int value) {
37        // Check if deque is full
38        if (isFull()) {
39            return false;
40        }
41      
42        // Calculate rear position and insert value
43        int rearIndex = (frontIndex + currentSize) % maxCapacity;
44        buffer[rearIndex] = value;
45        currentSize++;
46        return true;
47    }
48  
49    // Delete the front element from the deque
50    bool deleteFront() {
51        // Check if deque is empty
52        if (isEmpty()) {
53            return false;
54        }
55      
56        // Move front pointer forward circularly
57        frontIndex = (frontIndex + 1) % maxCapacity;
58        currentSize--;
59        return true;
60    }
61  
62    // Delete the last element from the deque
63    bool deleteLast() {
64        // Check if deque is empty
65        if (isEmpty()) {
66            return false;
67        }
68      
69        // Simply decrease size (rear pointer is calculated dynamically)
70        currentSize--;
71        return true;
72    }
73  
74    // Get the front element of the deque
75    int getFront() {
76        return isEmpty() ? -1 : buffer[frontIndex];
77    }
78  
79    // Get the rear element of the deque
80    int getRear() {
81        if (isEmpty()) {
82            return -1;
83        }
84        // Calculate rear position: (front + size - 1) with wrap-around
85        int rearIndex = (frontIndex + currentSize - 1) % maxCapacity;
86        return buffer[rearIndex];
87    }
88  
89    // Check if the deque is empty
90    bool isEmpty() {
91        return currentSize == 0;
92    }
93  
94    // Check if the deque is full
95    bool isFull() {
96        return currentSize == maxCapacity;
97    }
98};
99
100/**
101 * Your MyCircularDeque object will be instantiated and called as such:
102 * MyCircularDeque* obj = new MyCircularDeque(k);
103 * bool param_1 = obj->insertFront(value);
104 * bool param_2 = obj->insertLast(value);
105 * bool param_3 = obj->deleteFront();
106 * bool param_4 = obj->deleteLast();
107 * int param_5 = obj->getFront();
108 * int param_6 = obj->getRear();
109 * bool param_7 = obj->isEmpty();
110 * bool param_8 = obj->isFull();
111 */
112
1// Global variables for circular deque implementation
2let vals: number[];      // Array to store deque elements
3let length: number;       // Current number of elements in deque
4let size: number;         // Maximum capacity of deque
5let start: number;        // Index pointing to the front element
6let end: number;          // Index pointing to the position after rear element
7
8/**
9 * Initialize the circular deque with maximum size k
10 * @param k - Maximum capacity of the deque
11 */
12function MyCircularDeque(k: number): void {
13    vals = new Array(k).fill(0);
14    start = 0;
15    end = 0;
16    length = 0;
17    size = k;
18}
19
20/**
21 * Add an element at the front of the deque
22 * @param value - Value to be inserted
23 * @returns true if operation successful, false if deque is full
24 */
25function insertFront(value: number): boolean {
26    // Check if deque is full
27    if (isFull()) {
28        return false;
29    }
30
31    // Move start pointer backward circularly
32    if (start === 0) {
33        start = size - 1;
34    } else {
35        start--;
36    }
37  
38    // Insert value at new front position
39    vals[start] = value;
40    length++;
41    return true;
42}
43
44/**
45 * Add an element at the rear of the deque
46 * @param value - Value to be inserted
47 * @returns true if operation successful, false if deque is full
48 */
49function insertLast(value: number): boolean {
50    // Check if deque is full
51    if (isFull()) {
52        return false;
53    }
54
55    // Insert value at current end position
56    vals[end] = value;
57    length++;
58  
59    // Move end pointer forward circularly
60    if (end + 1 === size) {
61        end = 0;
62    } else {
63        end++;
64    }
65    return true;
66}
67
68/**
69 * Delete an element from the front of the deque
70 * @returns true if operation successful, false if deque is empty
71 */
72function deleteFront(): boolean {
73    // Check if deque is empty
74    if (isEmpty()) {
75        return false;
76    }
77
78    // Move start pointer forward circularly
79    if (start + 1 === size) {
80        start = 0;
81    } else {
82        start++;
83    }
84    length--;
85    return true;
86}
87
88/**
89 * Delete an element from the rear of the deque
90 * @returns true if operation successful, false if deque is empty
91 */
92function deleteLast(): boolean {
93    // Check if deque is empty
94    if (isEmpty()) {
95        return false;
96    }
97
98    // Move end pointer backward circularly
99    if (end === 0) {
100        end = size - 1;
101    } else {
102        end--;
103    }
104    length--;
105    return true;
106}
107
108/**
109 * Get the front element of the deque
110 * @returns Front element value, or -1 if deque is empty
111 */
112function getFront(): number {
113    // Return -1 if deque is empty
114    if (isEmpty()) {
115        return -1;
116    }
117
118    // Return element at start position
119    return vals[start];
120}
121
122/**
123 * Get the rear element of the deque
124 * @returns Rear element value, or -1 if deque is empty
125 */
126function getRear(): number {
127    // Return -1 if deque is empty
128    if (isEmpty()) {
129        return -1;
130    }
131
132    // Get the actual rear position (one position before end)
133    if (end === 0) {
134        return vals[size - 1];
135    }
136    return vals[end - 1];
137}
138
139/**
140 * Check if the deque is empty
141 * @returns true if deque is empty, false otherwise
142 */
143function isEmpty(): boolean {
144    return length === 0;
145}
146
147/**
148 * Check if the deque is full
149 * @returns true if deque is full, false otherwise
150 */
151function isFull(): boolean {
152    return length === size;
153}
154

Time and Space Complexity

Time Complexity:

  • __init__(k): O(k) - initializing an array of size k
  • insertFront(value): O(1) - only involves modular arithmetic and array indexing
  • insertLast(value): O(1) - only involves modular arithmetic and array indexing
  • deleteFront(): O(1) - only involves modular arithmetic and updating pointers
  • deleteLast(): O(1) - only involves decrementing the size counter
  • getFront(): O(1) - direct array access at the front index
  • getRear(): O(1) - calculating index using modular arithmetic and array access
  • isEmpty(): O(1) - simple comparison operation
  • isFull(): O(1) - simple comparison operation

Space Complexity:

  • Overall space complexity: O(k) where k is the capacity of the deque
  • The implementation uses a fixed-size array self.q of size k to store elements
  • Additional variables (self.front, self.size, self.capacity) use O(1) extra space
  • No additional space is used that scales with the number of operations

Learn more about how to find time and space complexity quickly.

Common Pitfalls

1. Incorrect Front Pointer Movement in insertFront()

Pitfall: A critical bug in the provided code is that insertFront() only moves the front pointer backward when the deque is not empty. This causes incorrect behavior when inserting multiple elements at the front starting from an empty deque.

Example of the bug:

deque = MyCircularDeque(3)
deque.insertFront(1)  # front_index stays 0, size = 1
deque.insertFront(2)  # front_index becomes 2, overwrites at index 2
# Buffer: [1, 0, 2], but logically should be [2, 1]

Solution: Always move the front pointer backward before insertion:

def insertFront(self, value: int) -> bool:
    if self.isFull():
        return False
  
    # Always move front pointer backward for front insertion
    self.front_index = (self.front_index - 1 + self.max_capacity) % self.max_capacity
    self.buffer[self.front_index] = value
    self.current_size += 1
    return True

2. Negative Index Wraparound Without Adding Capacity

Pitfall: When calculating (front_index - 1) % capacity, if front_index is 0, the result becomes -1 % capacity, which in Python gives capacity - 1 (correct), but in other languages like Java or C++, it might give -1, causing array index out of bounds.

Solution: Always add capacity before taking modulo to ensure positive result:

# Safe approach that works in all languages
self.front_index = (self.front_index - 1 + self.max_capacity) % self.max_capacity

3. Confusion Between Rear Index and Next Empty Position

Pitfall: Mixing up the actual rear element position with the next insertion position. The rear element is at (front + size - 1) % capacity, while the next insertion position for insertLast() is at (front + size) % capacity.

Example mistake:

def getRear(self) -> int:
    if self.isEmpty():
        return -1
    # Wrong: This gives the next empty position, not the rear element
    rear_index = (self.front_index + self.current_size) % self.max_capacity
    return self.buffer[rear_index]

Solution: Remember that:

  • Rear element position: (front + size - 1) % capacity
  • Next insertion position: (front + size) % capacity

4. Not Handling Edge Case of Single Element

Pitfall: When the deque has only one element, both getFront() and getRear() should return the same value, but incorrect index calculations might fail this case.

Test case to verify:

deque = MyCircularDeque(3)
deque.insertFront(5)
assert deque.getFront() == 5  # Should be 5
assert deque.getRear() == 5   # Should also be 5

5. Memory Leak Concerns (Language-Specific)

Pitfall: In languages with manual memory management or when storing objects, not clearing references when deleting elements can cause memory leaks.

Solution for object storage:

def deleteFront(self) -> bool:
    if self.isEmpty():
        return False
  
    # Optional: Clear the reference if storing objects
    # self.buffer[self.front_index] = None
  
    self.front_index = (self.front_index + 1) % self.max_capacity
    self.current_size -= 1
    return True
Discover Your Strengths and Weaknesses: Take Our 3-Minute Quiz to Tailor Your Study Plan:

Which of these properties could exist for a graph but not a tree?


Recommended Readings

Want a Structured Path to Master System Design Too? Don’t Miss This!

Load More