2097. Valid Arrangement of Pairs
Problem Description
Given a set of n
nodes, there are n
directed edges that form a sequence. The task is to find the correct arrangement of these edges to form the sequence. You are given a list pairs
where pairs[i] = [a, b] indicates that there is a directed edge from node a to node b.
Return a list of pairs representing the correct arrangement of the edges. If there are multiple answers, return any of them.
Example:
Given pairs = [[1, 2], [2, 3], [3, 4], [4, 1]]
Output: [[1, 2], [2, 3], [3, 4], [4, 1]]
Approach
The problem is a graph traversal problem, and we will be using Hierholzer's algorithm to find the valid arrangement. More specifically, we will first create a directed graph using the given node pairs. Then, we'll build the correct arrangement of the edges by starting at the unique node with an out-degree of 1 greater than its in-degree, or arbitrarily choosing a starting node if no such unique node exists.
We use the following key data structures:
- We store the graph using an unordered_map with the node value as the key and stacks as the values to store the adjacent nodes.
- We use two unordered_maps to store the in-degree and out-degree of each node.
Step 1: Create the directed graph
We first create the directed graph using the given node pairs. We also populate the in-degree and out-degree maps while doing this.
Step 2: Find the starting node
We check for a unique node where the out-degree is one more than the in-degree. If such a node exists, we start from that node; otherwise, we arbitarily choose a starting node from the given node pairs.
Step 3: Apply Hierholzer's algorithm to form the valid arrangement
We start at the starting node and traverse the edges in a depth-first manner using recursion and keeping track of the visited edges. We also keep track of the visited edges by popping them from the stack once traversed, which means that the stack will be empty when there is no more unvisited edge from that node.
Once all edges are visited, we reverse the order of the visited edges, representing the valid arrangement.
We'll implement this algorithm in a class called Solution
for the following languages: Python, Java, JavaScript, C++, and C#.
Python Solution
python class Solution: def validArrangement(self, pairs): ans = [] graph = {} outDegree = {} inDegree = {} for pair in pairs: start, end = pair if not start in graph: graph[start] = [] graph[start].append(end) outDegree[start] = outDegree.get(start, 0) + 1 inDegree[end] = inDegree.get(end, 0) + 1 startNode = self.getStartNode(graph, outDegree, inDegree, pairs) self.euler(graph, startNode, ans) ans.reverse() return ans def getStartNode(self, graph, outDegree, inDegree, pairs): for u in graph: if outDegree[u] - inDegree.get(u, 0) == 1: return u return pairs[0][0] def euler(self, graph, u, ans): while graph[u]: v = graph[u].pop() self.euler(graph, v, ans) ans.append([u, v])
Java Solution
java
import java.util.*;
class Solution {
public List<List<Integer>> validArrangement(int[][] pairs) {
List<List<Integer>> ans = new ArrayList<>();
Map<Integer, Stack<Integer>> graph = new HashMap<>();
Map<Integer, Integer> outDegree = new HashMap<>();
Map<Integer, Integer> inDegree = new HashMap<>();
for (int[] pair : pairs) {
int start = pair[0];
int end = pair[1];
graph.computeIfAbsent(start, x -> new Stack<>()).push(end);
outDegree.put(start, outDegree.getOrDefault(start, 0) + 1);
inDegree.put(end, inDegree.getOrDefault(end, 0) + 1);
}
int startNode = getStartNode(graph, outDegree, inDegree, pairs);
euler(graph, startNode, ans);
Collections.reverse(ans);
return ans;
}
private int getStartNode(Map<Integer, Stack<Integer>> graph, Map<Integer, Integer> outDegree, Map<Integer, Integer> inDegree, int[][] pairs) {
for (int u : graph.keySet()) {
if (outDegree.get(u) - inDegree.getOrDefault(u, 0) == 1) {
return u;
}
}
return pairs[0][0];
}
private void euler(Map<Integer, Stack<Integer>> graph, int u, List<List<Integer>> ans) {
Stack<Integer> stack = graph.get(u);
while (!stack.isEmpty()) {
int v = stack.pop();
euler(graph, v, ans);
ans.add(Arrays.asList(u, v));
}
}
}
JavaScript Solution
javascript
class Solution {
validArrangement(pairs) {
let ans = [];
let graph = new Map();
let outDegree = new Map();
let inDegree = new Map();
for (let pair of pairs) {
let start = pair[0];
let end = pair[1];
if (!graph.has(start)) {
graph.set(start, []);
}
graph.get(start).push(end);
outDegree.set(start, (outDegree.get(start) || 0) + 1);
inDegree.set(end, (inDegree.get(end) || 0) + 1);
}
let startNode = this.getStartNode(graph, outDegree, inDegree, pairs);
this.euler(graph, startNode, ans);
ans.reverse();
return ans;
}
getStartNode(graph, outDegree, inDegree, pairs) {
for (let u of graph.keys()) {
if ((outDegree.get(u) || 0) - (inDegree.get(u) || 0) == 1) {
return u;
}
}
return pairs[0][0];
}
euler(graph, u, ans) {
while (graph.get(u).length > 0) {
let v = graph.get(u).pop();
this.euler(graph, v, ans);
ans.push([u, v]);
}
}
}
C++ Solution
cpp
#include <unordered_map>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
class Solution {
public:
vector<vector<int>> validArrangement(vector<vector<int>>& pairs) {
vector<vector<int>> ans;
unordered_map<int, stack<int>> graph;
unordered_map<int, int> outDegree;
unordered_map<int, int> inDegree;
for (const vector<int>& pair : pairs) {
const int start = pair[0];
const int end = pair[1];
graph[start].push(end);
++outDegree[start];
++inDegree[end];
}
const int startNode = getStartNode(graph, outDegree, inDegree, pairs);
euler(graph, startNode, ans);
reverse(begin(ans), end(ans));
return ans;
}
private:
int getStartNode(const unordered_map<int, stack<int>>& graph,
unordered_map<int, int>& outDegree,
unordered_map<int, int>& inDegree,
const vector<vector<int>>& pairs) {
for (const auto& [u, _] : graph)
if (outDegree[u] - inDegree[u] == 1)
return u;
return pairs[0][0]; // Arbitrarily choose a node
}
void euler(unordered_map<int, stack<int>>& graph, int u,
vector<vector<int>>& ans) {
auto& stack = graph[u];
while (!stack.empty()) {
const int v = stack.top();
stack.pop();
euler(graph, v, ans);
ans.push_back({u, v});
}
}
};
C# Solution
csharp
using System;
using System.Collections.Generic;
public class Solution {
public IList<IList<int>> ValidArrangement(int[][] pairs) {
List<IList<int>> ans = new List<IList<int>>();
Dictionary<int, Stack<int>> graph = new Dictionary<int, Stack<int>>();
Dictionary<int, int> outDegree = new Dictionary<int, int>();
Dictionary<int, int> inDegree = new Dictionary<int, int>();
foreach (int[] pair in pairs) {
int start = pair[0];
int end = pair[1];
if (!graph.ContainsKey(start)) {
graph[start] = new Stack<int>();
}
graph[start].Push(end);
outDegree[start] = outDegree.GetValueOrDefault(start, 0) + 1;
inDegree[end] = inDegree.GetValueOrDefault(end, 0) + 1;
}
int startNode = GetStartNode(graph, outDegree, inDegree, pairs);
Euler(graph, startNode, ans);
ans.Reverse();
return ans;
}
private int GetStartNode(Dictionary<int, Stack<int>> graph, Dictionary<int, int> outDegree, Dictionary<int, int> inDegree, int[][] pairs) {
foreach (int u in graph.Keys) {
if (outDegree[u] - inDegree.GetValueOrDefault(u, 0) == 1) {
return u;
}
}
return pairs[0][0];
}
private void Euler(Dictionary<int, Stack<int>> graph, int u, List<IList<int>> ans) {
Stack<int> stack = graph[u];
while (stack.Count > 0) {
int v = stack.Pop();
Euler(graph, v, ans);
ans.Add(new int[] {u, v});
}
}
}
In this article, we have implemented the validArrangement function using Hierholzer's algorithm for the following languages: Python, Java, JavaScript, C++, and C#. This function takes a list of directed node pairs called pairs and returns the correct arrangement of the edges. We created the directed graph using the given node pairs and applied Hierholzer's algorithm to form the valid arrangement.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorWhich technique can we use to find the middle of a linked list?
Recommended Readings
LeetCode Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way we
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https algomonster s3 us east 2 amazonaws com recursion jpg You first
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!