2484. Count Palindromic Subsequences
Problem Description
You are given a string s
consisting only of digits (0-9). Your task is to count the number of palindromic subsequences of length exactly 5 that can be formed from this string.
A palindromic string reads the same forwards and backwards. For example, "12321" is palindromic because it's the same when reversed.
A subsequence is formed by deleting some (possibly zero) characters from the original string without changing the relative order of the remaining characters. For instance, if s = "12345"
, then "135" is a subsequence (formed by deleting characters at positions 2 and 4), but "153" is not (because it changes the relative order).
Since the count can be very large, return the result modulo 10^9 + 7
.
Example clarification:
- A palindromic subsequence of length 5 has the pattern where the 1st character equals the 5th, and the 2nd character equals the 4th. The middle (3rd) character can be any digit.
- For a string like "123321", one valid palindromic subsequence of length 5 would be "12321" (taking indices 0,1,2,4,5).
The solution approach uses dynamic programming to efficiently count these palindromes. It pre-computes:
pre[i][j][k]
: the number of pairs(j, k)
that can be formed using characters before positioni
suf[i][j][k]
: the number of pairs(j, k)
that can be formed using characters after positioni
Then, for each position as the middle character, it multiplies the matching pairs from before and after to get the total count of palindromes with that center.
Intuition
To find palindromic subsequences of length 5, we need to understand their structure. A 5-character palindrome has the form abcba
, where the first two characters mirror the last two, and c
is the middle character.
The key insight is that we can fix the middle character and count how many valid palindromes can be formed around it. For each position i
in the string as the potential middle character, we need to:
- Count all possible pairs
(a, b)
that can be formed from characters before positioni
- Count all possible pairs
(b, a)
that can be formed from characters after positioni
- Multiply these counts together
Why does this work? Because if we have x
ways to form pair (a, b)
on the left and y
ways to form pair (b, a)
on the right, then we have x * y
ways to form the palindrome abcba
with the character at position i
as the center.
For example, if before position i
we can form the pair (1, 2)
in 3 different ways, and after position i
we can form the pair (2, 1)
in 2 different ways, then we can create 3 * 2 = 6
palindromes of the form 12c21
where c
is the character at position i
.
The challenge is efficiently counting these pairs. We use dynamic programming:
pre[i][j][k]
counts how many times we can pick digitj
followed by digitk
from the firsti
characterssuf[i][j][k]
counts how many times we can pick digitj
followed by digitk
from positioni
onwards
To build pre[i][j][k]
, we observe that when we add character s[i]
with value v
:
- All previous counts remain valid:
pre[i][j][k] = pre[i-1][j][k]
- For each digit
j
that appeared before positioni
, we can now form a new pair(j, v)
by combiningj
with the current characterv
The same logic applies for building suf
but in reverse order. This preprocessing allows us to answer our counting query in O(1)
time for each middle position and each pair of digits.
Learn more about Dynamic Programming patterns.
Solution Approach
The implementation uses dynamic programming with prefix and suffix counting to efficiently enumerate all palindromic subsequences of length 5.
Data Structures:
pre[i][j][k]
: 3D array storing the count of pairs(j, k)
that can be formed using digits from positions0
toi-1
suf[i][j][k]
: 3D array storing the count of pairs(j, k)
that can be formed using digits from positioni
ton-1
c[d]
: Frequency counter for digitd
seen so far during preprocessing
Algorithm Steps:
-
Initialize arrays: Create
pre
andsuf
arrays of size(n+2) × 10 × 10
initialized to 0. The extra padding simplifies boundary handling. -
Build prefix counts (
pre
):For each position i from 1 to n: - Copy all counts from pre[i-1] to pre[i] - Current digit v = s[i-1] - For each digit j (0-9): pre[i][j][v] += c[j] // j appeared c[j] times before, now paired with v - Increment c[v] by 1
This builds up pairs where the first element comes before the second in the string.
-
Build suffix counts (
suf
):For each position i from n down to 1: - Copy all counts from suf[i+1] to suf[i] - Current digit v = s[i-1] - For each digit j (0-9): suf[i][j][v] += c[j] // v at position i paired with j that comes after - Increment c[v] by 1
This counts pairs in reverse order from the end of the string.
-
Count palindromes:
For each position i as middle character: For each pair (j, k): ans += pre[i-1][j][k] * suf[i+1][j][k]
For palindrome pattern
jk-i-kj
, we multiply:- Number of
(j,k)
pairs before positioni
- Number of
(j,k)
pairs after positioni
(note: same order due to palindrome property)
- Number of
-
Return result modulo
10^9 + 7
Time Complexity: O(n × 100)
= O(n)
since we iterate through the string three times with constant work (10×10 digit pairs) at each position.
Space Complexity: O(n × 100)
= O(n)
for the pre
and suf
arrays.
The elegance of this solution lies in decomposing the palindrome counting problem into counting matching pairs on both sides of each potential center character, avoiding the need to explicitly enumerate all possible subsequences.
Ready to land your dream job?
Unlock your dream job with a 3-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through the solution with s = "12321"
.
Step 1: Build prefix counts (pre
)
We'll track pairs (j,k)
that can be formed from left to right.
-
Position 1 (digit '1'):
- No pairs yet, just record we've seen one '1'
c[1] = 1
-
Position 2 (digit '2'):
- Can form pair (1,2) once (using the '1' at position 1)
pre[2][1][2] = 1
c[2] = 1
-
Position 3 (digit '3'):
- Copy previous pairs:
pre[3][1][2] = 1
- Can form new pairs: (1,3) once, (2,3) once
pre[3][1][3] = 1
,pre[3][2][3] = 1
c[3] = 1
- Copy previous pairs:
-
Position 4 (digit '2'):
- Copy previous pairs
- Can form new pairs: (1,2) again, (2,2) once, (3,2) once
pre[4][1][2] = 2
,pre[4][2][2] = 1
,pre[4][3][2] = 1
- Other pairs remain:
pre[4][1][3] = 1
,pre[4][2][3] = 1
-
Position 5 (digit '1'):
- Copy and add new pairs with '1' as second element
- Notable:
pre[5][2][1] = 2
(two '2's before this '1')
Step 2: Build suffix counts (suf
)
Now track pairs from right to left.
-
Position 5 (digit '1'):
- No pairs yet,
c[1] = 1
- No pairs yet,
-
Position 4 (digit '2'):
- Can form pair (2,1) once
suf[4][2][1] = 1
-
Position 3 (digit '3'):
- Copy previous:
suf[3][2][1] = 1
- New pairs: (3,2) once, (3,1) once
suf[3][3][2] = 1
,suf[3][3][1] = 1
- Copy previous:
-
Position 2 (digit '2'):
- Notable:
suf[2][2][1] = 2
(can pick '2' at pos 2, then '1' at pos 5) suf[2][2][3] = 1
,suf[2][2][2] = 1
- Notable:
-
Position 1 (digit '1'):
- Multiple pairs possible including
suf[1][1][2] = 2
- Multiple pairs possible including
Step 3: Count palindromes
For each position as middle:
-
Middle at position 1 (digit '1'):
- No characters before, so
pre[0][j][k] = 0
for all j,k - Result: 0 palindromes
- No characters before, so
-
Middle at position 2 (digit '2'):
- Need matching pairs like (1,2) before and (2,1) after
pre[1][2][1]
= 0 (no (2,1) pairs before position 2)- Result: 0 palindromes
-
Middle at position 3 (digit '3'):
- Check pair (1,2):
pre[2][1][2] = 1
,suf[4][1][2] = 0
- Check pair (2,1):
pre[2][2][1] = 0
,suf[4][2][1] = 1
- Result: 0 palindromes
- Check pair (1,2):
-
Middle at position 4 (digit '2'):
- Check pair (1,2):
pre[3][1][2] = 1
,suf[5][1][2] = 0
- Check pair (2,1):
pre[3][2][1] = 0
,suf[5][2][1] = 0
- Check pair (1,3):
pre[3][1][3] = 1
,suf[5][1][3] = 0
- Result: 0 palindromes
- Check pair (1,2):
-
Middle at position 5 (digit '1'):
- Check pair (1,2):
pre[4][1][2] = 2
,suf[6][1][2] = 0
- Check pair (2,1):
pre[4][2][1] = 0
,suf[6][2][1] = 0
- Result: 0 palindromes
- Check pair (1,2):
Wait, this example doesn't yield palindromes because we need longer strings. Let me use s = "123321"
:
For this string, when position 3 (digit '3') is the middle:
pre[2][1][2] = 1
(pair "12" from positions 0,1)suf[4][1][2] = 1
(pair "12" from positions 4,5 → digits '2','1')
But actually we need suf[4][2][1] = 1
for the palindrome pattern.
The key insight: for palindrome "12321", we need:
- Pair (1,2) before middle
- Pair (2,1) after middle (reverse order!)
So when checking position 3 as middle:
pre[2][1][2] × suf[4][2][1] = 1 × 1 = 1
This gives us one palindrome: selecting indices 0,1,2,3,4 → "12321"
Final answer: 1 palindromic subsequence of length 5
Solution Implementation
1class Solution:
2 def countPalindromes(self, s: str) -> int:
3 MOD = 10**9 + 7
4 n = len(s)
5
6 # prefix_pairs[i][j][k] = count of subsequences "jk" ending before position i
7 prefix_pairs = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)]
8
9 # suffix_pairs[i][j][k] = count of subsequences "jk" starting after position i
10 suffix_pairs = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)]
11
12 # Convert string to list of integers for easier processing
13 digits = [int(char) for char in s]
14
15 # Build prefix pairs: count all possible two-digit subsequences before each position
16 digit_count = [0] * 10 # Count of each digit seen so far
17 for pos in range(1, n + 1):
18 current_digit = digits[pos - 1]
19
20 # Copy previous counts
21 for first_digit in range(10):
22 for second_digit in range(10):
23 prefix_pairs[pos][first_digit][second_digit] = prefix_pairs[pos - 1][first_digit][second_digit]
24
25 # Add new pairs formed with current digit as the second digit
26 for first_digit in range(10):
27 prefix_pairs[pos][first_digit][current_digit] += digit_count[first_digit]
28
29 # Update count of current digit
30 digit_count[current_digit] += 1
31
32 # Build suffix pairs: count all possible two-digit subsequences after each position
33 digit_count = [0] * 10 # Reset count for suffix processing
34 for pos in range(n, 0, -1):
35 current_digit = digits[pos - 1]
36
37 # Copy previous counts
38 for first_digit in range(10):
39 for second_digit in range(10):
40 suffix_pairs[pos][first_digit][second_digit] = suffix_pairs[pos + 1][first_digit][second_digit]
41
42 # Add new pairs formed with current digit as the first digit
43 for second_digit in range(10):
44 suffix_pairs[pos][current_digit][second_digit] += digit_count[second_digit]
45
46 # Update count of current digit
47 digit_count[current_digit] += 1
48
49 # Count palindromes: for each position as middle character,
50 # multiply matching prefix and suffix pairs
51 total_palindromes = 0
52 for middle_pos in range(1, n + 1):
53 for first_digit in range(10):
54 for second_digit in range(10):
55 # For palindrome "ab_ba", we need prefix "ab" and suffix "ba"
56 # Note: suffix uses [second_digit][first_digit] for mirror pattern
57 palindrome_count = prefix_pairs[middle_pos - 1][first_digit][second_digit] * \
58 suffix_pairs[middle_pos + 1][second_digit][first_digit]
59 total_palindromes = (total_palindromes + palindrome_count) % MOD
60
61 return total_palindromes
62
1class Solution {
2 private static final int MOD = (int) 1e9 + 7;
3
4 public int countPalindromes(String s) {
5 int length = s.length();
6
7 // prefixPairs[i][j][k] = count of subsequences "jk" in s[0...i-1]
8 int[][][] prefixPairs = new int[length + 2][10][10];
9 // suffixPairs[i][j][k] = count of subsequences "kj" in s[i...n-1]
10 int[][][] suffixPairs = new int[length + 2][10][10];
11
12 // Convert string to digit array for easier access
13 int[] digits = new int[length];
14 for (int i = 0; i < length; ++i) {
15 digits[i] = s.charAt(i) - '0';
16 }
17
18 // Build prefix pairs: count all possible pairs (j, k) before each position
19 int[] digitCount = new int[10];
20 for (int i = 1; i <= length; ++i) {
21 int currentDigit = digits[i - 1];
22
23 // Copy previous counts
24 for (int j = 0; j < 10; ++j) {
25 for (int k = 0; k < 10; ++k) {
26 prefixPairs[i][j][k] = prefixPairs[i - 1][j][k];
27 }
28 }
29
30 // Add new pairs ending with current digit
31 // For each digit j seen before, we can form pair (j, currentDigit)
32 for (int j = 0; j < 10; ++j) {
33 prefixPairs[i][j][currentDigit] += digitCount[j];
34 }
35
36 // Update count of current digit
37 digitCount[currentDigit]++;
38 }
39
40 // Build suffix pairs: count all possible pairs (k, j) after each position
41 digitCount = new int[10];
42 for (int i = length; i > 0; --i) {
43 int currentDigit = digits[i - 1];
44
45 // Copy previous counts
46 for (int j = 0; j < 10; ++j) {
47 for (int k = 0; k < 10; ++k) {
48 suffixPairs[i][j][k] = suffixPairs[i + 1][j][k];
49 }
50 }
51
52 // Add new pairs starting with current digit
53 // For each digit j seen after, we can form pair (currentDigit, j)
54 for (int j = 0; j < 10; ++j) {
55 suffixPairs[i][j][currentDigit] += digitCount[j];
56 }
57
58 // Update count of current digit
59 digitCount[currentDigit]++;
60 }
61
62 // Count palindromes with middle character at each position
63 long totalCount = 0;
64 for (int middlePos = 1; middlePos <= length; ++middlePos) {
65 // For each possible pair (j, k), count palindromes of form "jk?kj"
66 // where ? is the character at middlePos
67 for (int j = 0; j < 10; ++j) {
68 for (int k = 0; k < 10; ++k) {
69 // Multiply count of "jk" before middle with count of "kj" after middle
70 totalCount += (long) prefixPairs[middlePos - 1][j][k] * suffixPairs[middlePos + 1][j][k];
71 totalCount %= MOD;
72 }
73 }
74 }
75
76 return (int) totalCount;
77 }
78}
79
1class Solution {
2public:
3 const int MOD = 1e9 + 7;
4
5 int countPalindromes(string s) {
6 int n = s.size();
7
8 // prefixPairs[i][j][k] = count of pairs (j, k) in s[0...i-1]
9 // where j appears before k
10 int prefixPairs[n + 2][10][10];
11
12 // suffixPairs[i][j][k] = count of pairs (j, k) in s[i...n-1]
13 // where j appears after k
14 int suffixPairs[n + 2][10][10];
15
16 // Initialize arrays to 0
17 memset(prefixPairs, 0, sizeof(prefixPairs));
18 memset(suffixPairs, 0, sizeof(suffixPairs));
19
20 // Convert string to digit array for faster access
21 int digits[n];
22 for (int i = 0; i < n; ++i) {
23 digits[i] = s[i] - '0';
24 }
25
26 // Build prefix pairs: count all (j, k) pairs where j comes before k
27 int digitCount[10] = {0}; // Count of each digit seen so far
28 for (int i = 1; i <= n; ++i) {
29 int currentDigit = digits[i - 1];
30
31 // Copy previous counts
32 for (int j = 0; j < 10; ++j) {
33 for (int k = 0; k < 10; ++k) {
34 prefixPairs[i][j][k] = prefixPairs[i - 1][j][k];
35 }
36 }
37
38 // Add new pairs formed with current digit as the second element
39 // For each digit j seen before, (j, currentDigit) forms a new pair
40 for (int j = 0; j < 10; ++j) {
41 prefixPairs[i][j][currentDigit] += digitCount[j];
42 }
43
44 digitCount[currentDigit]++;
45 }
46
47 // Build suffix pairs: count all (j, k) pairs where j comes after k
48 memset(digitCount, 0, sizeof(digitCount));
49 for (int i = n; i > 0; --i) {
50 int currentDigit = digits[i - 1];
51
52 // Copy next position counts
53 for (int j = 0; j < 10; ++j) {
54 for (int k = 0; k < 10; ++k) {
55 suffixPairs[i][j][k] = suffixPairs[i + 1][j][k];
56 }
57 }
58
59 // Add new pairs formed with current digit as the second element
60 // For each digit j seen after, (j, currentDigit) forms a new pair
61 for (int j = 0; j < 10; ++j) {
62 suffixPairs[i][j][currentDigit] += digitCount[j];
63 }
64
65 digitCount[currentDigit]++;
66 }
67
68 // Count palindromes: for each position i as middle character
69 // Count palindromes of form "ab[i]ba" where a and b are digits
70 long long totalPalindromes = 0;
71 for (int i = 1; i <= n; ++i) {
72 for (int firstDigit = 0; firstDigit < 10; ++firstDigit) {
73 for (int secondDigit = 0; secondDigit < 10; ++secondDigit) {
74 // Multiply prefix pairs (firstDigit, secondDigit) before position i
75 // with suffix pairs (firstDigit, secondDigit) after position i
76 // This forms palindrome: firstDigit-secondDigit-[middle]-secondDigit-firstDigit
77 totalPalindromes += 1LL * prefixPairs[i - 1][firstDigit][secondDigit] *
78 suffixPairs[i + 1][firstDigit][secondDigit];
79 totalPalindromes %= MOD;
80 }
81 }
82 }
83
84 return totalPalindromes;
85 }
86};
87
1const MOD = 1e9 + 7;
2
3function countPalindromes(s: string): number {
4 const n = s.length;
5
6 // prefixPairs[i][j][k] = count of pairs (j, k) in s[0...i-1]
7 // where digit j appears before digit k
8 const prefixPairs: number[][][] = Array(n + 2)
9 .fill(null)
10 .map(() => Array(10).fill(null).map(() => Array(10).fill(0)));
11
12 // suffixPairs[i][j][k] = count of pairs (j, k) in s[i...n-1]
13 // where digit j appears after digit k
14 const suffixPairs: number[][][] = Array(n + 2)
15 .fill(null)
16 .map(() => Array(10).fill(null).map(() => Array(10).fill(0)));
17
18 // Convert string to digit array for faster access
19 const digits: number[] = [];
20 for (let i = 0; i < n; i++) {
21 digits[i] = parseInt(s[i]);
22 }
23
24 // Build prefix pairs: count all (j, k) pairs where j comes before k
25 const digitCountPrefix: number[] = Array(10).fill(0); // Count of each digit seen so far
26 for (let i = 1; i <= n; i++) {
27 const currentDigit = digits[i - 1];
28
29 // Copy previous counts to current position
30 for (let j = 0; j < 10; j++) {
31 for (let k = 0; k < 10; k++) {
32 prefixPairs[i][j][k] = prefixPairs[i - 1][j][k];
33 }
34 }
35
36 // Add new pairs formed with current digit as the second element
37 // For each digit j seen before, (j, currentDigit) forms a new pair
38 for (let j = 0; j < 10; j++) {
39 prefixPairs[i][j][currentDigit] += digitCountPrefix[j];
40 }
41
42 // Increment count of current digit
43 digitCountPrefix[currentDigit]++;
44 }
45
46 // Build suffix pairs: count all (j, k) pairs where j comes after k
47 const digitCountSuffix: number[] = Array(10).fill(0); // Count of each digit seen so far
48 for (let i = n; i > 0; i--) {
49 const currentDigit = digits[i - 1];
50
51 // Copy next position counts to current position
52 for (let j = 0; j < 10; j++) {
53 for (let k = 0; k < 10; k++) {
54 suffixPairs[i][j][k] = suffixPairs[i + 1][j][k];
55 }
56 }
57
58 // Add new pairs formed with current digit as the second element
59 // For each digit j seen after, (j, currentDigit) forms a new pair
60 for (let j = 0; j < 10; j++) {
61 suffixPairs[i][j][currentDigit] += digitCountSuffix[j];
62 }
63
64 // Increment count of current digit
65 digitCountSuffix[currentDigit]++;
66 }
67
68 // Count palindromes: for each position i as middle character
69 // Count palindromes of form "ab[i]ba" where a and b are digits
70 let totalPalindromes = 0;
71 for (let i = 1; i <= n; i++) {
72 for (let firstDigit = 0; firstDigit < 10; firstDigit++) {
73 for (let secondDigit = 0; secondDigit < 10; secondDigit++) {
74 // Multiply prefix pairs (firstDigit, secondDigit) before position i
75 // with suffix pairs (firstDigit, secondDigit) after position i
76 // This forms palindrome: firstDigit-secondDigit-[middle]-secondDigit-firstDigit
77 const product = prefixPairs[i - 1][firstDigit][secondDigit] *
78 suffixPairs[i + 1][firstDigit][secondDigit];
79 totalPalindromes = (totalPalindromes + product) % MOD;
80 }
81 }
82 }
83
84 return totalPalindromes;
85}
86
Time and Space Complexity
The time complexity is O(100 × n)
, which can be broken down as follows:
- The first loop iterates through
n
positions, and for each position, it copies a 10×10 matrix from the previous position and updates 10 entries, takingO(100)
time per iteration, resulting inO(100 × n)
. - The second loop similarly iterates through
n
positions in reverse, performing the sameO(100)
operations per iteration, resulting inO(100 × n)
. - The final loop iterates through
n
positions, and for each position, it performs calculations for all 10×10 pairs of digits(j, k)
, takingO(100)
time per position, resulting inO(100 × n)
. - Total:
O(100 × n) + O(100 × n) + O(100 × n) = O(100 × n)
.
The space complexity is O(100 × n)
, which comes from:
- The
pre
array:(n + 2) × 10 × 10 = O(100 × n)
space. - The
suf
array:(n + 2) × 10 × 10 = O(100 × n)
space. - Other variables (
t
,c
) useO(n)
andO(10)
space respectively, which are negligible. - Total:
O(100 × n) + O(100 × n) = O(100 × n)
.
Where n
is the length of the string s
.
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrect Index Mapping for Suffix Pairs
The most critical pitfall in this problem is misunderstanding how to use the suffix pairs when counting palindromes. When forming a palindrome of pattern ab-c-ba
, the suffix part needs to be ba
(reversed order), but the suffix array stores pairs in their original left-to-right order.
Incorrect approach:
# Wrong: Using the same indices as prefix palindrome_count = prefix_pairs[middle_pos - 1][first_digit][second_digit] * \ suffix_pairs[middle_pos + 1][first_digit][second_digit]
Correct approach:
# Correct: Swap indices for suffix to account for palindrome symmetry palindrome_count = prefix_pairs[middle_pos - 1][first_digit][second_digit] * \ suffix_pairs[middle_pos + 1][second_digit][first_digit]
2. Integer Overflow Without Proper Modulo Operations
Since we're multiplying large numbers, intermediate results can exceed integer limits. Failing to apply modulo at each step can cause overflow.
Incorrect approach:
# Wrong: Accumulating without modulo can cause overflow total_palindromes += palindrome_count # Apply modulo only at the end return total_palindromes % MOD
Correct approach:
# Correct: Apply modulo after each addition total_palindromes = (total_palindromes + palindrome_count) % MOD
3. Off-by-One Errors in Array Indexing
The padding strategy (using n+2 size arrays) can lead to confusion about proper index usage.
Common mistakes:
- Using
prefix_pairs[middle_pos]
instead ofprefix_pairs[middle_pos - 1]
(includes the middle character in prefix) - Using
suffix_pairs[middle_pos]
instead ofsuffix_pairs[middle_pos + 1]
(includes the middle character in suffix)
Solution: Always remember that for position i
as middle:
- Prefix should contain positions
[0, i-1]
- Suffix should contain positions
[i+1, n-1]
4. Forgetting to Reset Counter Arrays
When building suffix pairs, forgetting to reset the digit counter array will lead to incorrect counts.
Incorrect approach:
digit_count = [0] * 10
# Build prefix pairs...
# Forgot to reset digit_count before building suffix pairs
for pos in range(n, 0, -1):
# This will use leftover counts from prefix building
Correct approach:
digit_count = [0] * 10 # For prefix # Build prefix pairs... digit_count = [0] * 10 # Reset for suffix # Build suffix pairs...
5. Misunderstanding Subsequence vs Substring
A common conceptual error is treating this as a substring problem, where elements must be contiguous. Remember that subsequences allow skipping elements while maintaining relative order.
Key insight: The DP approach correctly handles this by accumulating all possible pairs regardless of their distance in the original string.
Which data structure is used in a depth first search?
Recommended Readings
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https assets algo monster recursion jpg You first call Ben and ask
Want a Structured Path to Master System Design Too? Don’t Miss This!