Network Delay Time

You are given a network of n nodes, labeled from 1 to n. You are also given times, a list of travel times as directed edges times[i] = (ui, vi, wi), where ui is the source node, vi is the target node, and wi is the time it takes for a signal to travel from source to target.

We will send a signal from a given node k. Return the minimum time it takes for all the n nodes to receive the signal. If it is impossible for all the n nodes to receive the signal, return -1.

Example 1:

Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
Output: 2

Example 2:
Input: times = [[1,2,1]], n = 2, k = 1
Output: 1

Example 3:
Input: times = [[1,2,1]], n = 2, k = 2
Output: -1

Constraints:

  • 1 <= k <= n <= 100
  • 1 <= times.length <= 6000
  • times[i].length == 3
  • 1 <= ui, vi <= n
  • ui != vi
  • 0 <= wi <= 100
  • All the pairs (ui, vi) are unique. (i.e., no multiple edges.)

Solution

We wish to find the shortest path from k to all nodes in the graph. Dijkstra's algorithm is the best approach in finding shortest path from a single source. We will keep track of the delay time from k to each node, and find the maximum in the end.

Implementation

1def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:
2    graph = defaultdict(list)
3    for src, dst, time in times:
4        graph[src].append((time, dst)) 
5    
6    queue = [(0, k)]
7    delay_time = [inf for _ in range(n+1)]
8    while queue:
9        cur_time, cur_node = heapq.heappop(queue) # pop min from min-heap
10        if cur_time > delay_time[cur_node]:       # a shorter path exists
11            continue
12        for edge in graph[cur_node]:
13            new_time, new_node = edge
14            if delay_time[new_node] > cur_time + new_time:
15                delay_time[new_node] = cur_time + new_time
16                heapq.heappush(queue, (delay_time[new_node], new_node))
17    
18    max_delay = max(delay_time)
19    return max_delay if max_delay != inf else -1

Ready to land your dream job?

Unlock your dream job with a 2-minute evaluator for a personalized learning plan!

Start Evaluator
Discover Your Strengths and Weaknesses: Take Our 2-Minute Quiz to Tailor Your Study Plan:
Question 1 out of 10

What does the following code do?

1def f(arr1, arr2):
2  i, j = 0, 0
3  new_arr = []
4  while i < len(arr1) and j < len(arr2):
5      if arr1[i] < arr2[j]:
6          new_arr.append(arr1[i])
7          i += 1
8      else:
9          new_arr.append(arr2[j])
10          j += 1
11  new_arr.extend(arr1[i:])
12  new_arr.extend(arr2[j:])
13  return new_arr
14
1public static List<Integer> f(int[] arr1, int[] arr2) {
2  int i = 0, j = 0;
3  List<Integer> newArr = new ArrayList<>();
4
5  while (i < arr1.length && j < arr2.length) {
6      if (arr1[i] < arr2[j]) {
7          newArr.add(arr1[i]);
8          i++;
9      } else {
10          newArr.add(arr2[j]);
11          j++;
12      }
13  }
14
15  while (i < arr1.length) {
16      newArr.add(arr1[i]);
17      i++;
18  }
19
20  while (j < arr2.length) {
21      newArr.add(arr2[j]);
22      j++;
23  }
24
25  return newArr;
26}
27
1function f(arr1, arr2) {
2  let i = 0, j = 0;
3  let newArr = [];
4  
5  while (i < arr1.length && j < arr2.length) {
6      if (arr1[i] < arr2[j]) {
7          newArr.push(arr1[i]);
8          i++;
9      } else {
10          newArr.push(arr2[j]);
11          j++;
12      }
13  }
14  
15  while (i < arr1.length) {
16      newArr.push(arr1[i]);
17      i++;
18  }
19  
20  while (j < arr2.length) {
21      newArr.push(arr2[j]);
22      j++;
23  }
24  
25  return newArr;
26}
27

Recommended Readings

Got a question?ย Ask the Monster Assistantย anything you don't understand.

Still not clear? ย Submitย the part you don't understand to our editors. Or join ourย Discord and ask the community.

Coding Interview Strategies

Dive into our free, detailed pattern charts and company guides to understand what each company focuses on.

See Patterns
โ†
โ†‘๐Ÿช„