Koko Eating Bananas
Koko loves to eat bananas. There are n piles of bananas, the ith pile has piles[i] bananas. The guards have gone and will come back in h hours.
Koko can decide her bananas-per-hour eating speed of k. Each hour, she chooses some pile of bananas and eats k bananas from that pile. If the pile has less than k bananas, she eats all of them instead and will not eat any more bananas during this hour.
Koko likes to eat slowly but still wants to finish eating all the bananas before the guards return.
Return the minimum integer k such that she can eat all the bananas within h hours.
Example 1:
Input: piles = [3,6,7,11], h = 8
Output: 4
Example 2:
Input: piles = [30,11,23,4,20], h = 5
Output: 30
Example 3:
Input: piles = [30,11,23,4,20], h = 6
Output: 23
Constraints:
1 <= piles.length <= 104piles.length <= h <= 1091 <= piles[i] <= 109
Solution
We want to apply the binary search template, and implement the feasible function.
Here, the feasible function is whether Koko can_finish_eating all piles within h hours while eating at speed k per hour.
Since Koko eats at only one pile during each hour, ceil(float(p)/k) is the time Koko takes to finish pile p.
Note that p/k does not work here because we want a whole number of hours so we needed to round up p/k.
Therefore, the feasiblity is determined by whether Koko's hours_used is within h hours, where hours_used is the total hours to finish all piles.
Recall example 1 with Input: piles = [3,6,7,11], h = 8, and Output: 4, the can_finish_eating function returns the following results.

Implementation
def can_finish_eating(piles, h, k):
hours_used = 0
for p in piles:
hours_used += ceil(float(p)/k)
return hours_used <= h
def minEatingSpeed(piles, h):
left, right = 1, 1000000000 # 10^9 max pile size
ans = -1
while left <= right:
mid = (left + right) // 2
if can_finish_eating(piles, h, mid):
ans = mid
right = mid - 1
else:
left = mid + 1
return ans
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorWhat's the output of running the following function using input 56?
1KEYBOARD = {
2 '2': 'abc',
3 '3': 'def',
4 '4': 'ghi',
5 '5': 'jkl',
6 '6': 'mno',
7 '7': 'pqrs',
8 '8': 'tuv',
9 '9': 'wxyz',
10}
11
12def letter_combinations_of_phone_number(digits):
13 def dfs(path, res):
14 if len(path) == len(digits):
15 res.append(''.join(path))
16 return
17
18 next_number = digits[len(path)]
19 for letter in KEYBOARD[next_number]:
20 path.append(letter)
21 dfs(path, res)
22 path.pop()
23
24 res = []
25 dfs([], res)
26 return res
271private static final Map<Character, char[]> KEYBOARD = Map.of(
2 '2', "abc".toCharArray(),
3 '3', "def".toCharArray(),
4 '4', "ghi".toCharArray(),
5 '5', "jkl".toCharArray(),
6 '6', "mno".toCharArray(),
7 '7', "pqrs".toCharArray(),
8 '8', "tuv".toCharArray(),
9 '9', "wxyz".toCharArray()
10);
11
12public static List<String> letterCombinationsOfPhoneNumber(String digits) {
13 List<String> res = new ArrayList<>();
14 dfs(new StringBuilder(), res, digits.toCharArray());
15 return res;
16}
17
18private static void dfs(StringBuilder path, List<String> res, char[] digits) {
19 if (path.length() == digits.length) {
20 res.add(path.toString());
21 return;
22 }
23 char next_digit = digits[path.length()];
24 for (char letter : KEYBOARD.get(next_digit)) {
25 path.append(letter);
26 dfs(path, res, digits);
27 path.deleteCharAt(path.length() - 1);
28 }
29}
301const KEYBOARD = {
2 '2': 'abc',
3 '3': 'def',
4 '4': 'ghi',
5 '5': 'jkl',
6 '6': 'mno',
7 '7': 'pqrs',
8 '8': 'tuv',
9 '9': 'wxyz',
10}
11
12function letter_combinations_of_phone_number(digits) {
13 let res = [];
14 dfs(digits, [], res);
15 return res;
16}
17
18function dfs(digits, path, res) {
19 if (path.length === digits.length) {
20 res.push(path.join(''));
21 return;
22 }
23 let next_number = digits.charAt(path.length);
24 for (let letter of KEYBOARD[next_number]) {
25 path.push(letter);
26 dfs(digits, path, res);
27 path.pop();
28 }
29}
30Recommended Readings
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion If you prefer videos here's a video that explains recursion in a fun and easy way Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https assets algo monster recursion jpg You first call Ben and ask him
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity describes how the time needed
Want a Structured Path to Master System Design Too? Don’t Miss This!