1012. Numbers With Repeated Digits
Problem Description
Given an integer n
, you need to count how many positive integers from 1 to n
contain at least one repeated digit.
For example:
- The number
11
has a repeated digit (the digit1
appears twice) - The number
121
has a repeated digit (the digit1
appears twice) - The number
123
has no repeated digits (all digits are unique)
The solution uses a digit dynamic programming approach with state compression. Instead of directly counting numbers with repeated digits, it calculates numbers with no repeated digits and subtracts from the total.
The key idea is to use a bitmask to track which digits (0-9) have already appeared in the number being formed. The dfs
function explores all valid digit combinations while:
- Tracking used digits via the
mask
parameter (bitj
is set if digitj
has been used) - Handling leading zeros with the
lead
parameter - Respecting the upper bound
n
with thelimit
parameter
For each position, the algorithm tries placing each valid digit (0-9), skipping those already used (checked via mask >> j & 1
). The final answer is n - count_of_numbers_with_unique_digits
.
The time complexity is O(log n × 2^10 × 10)
where log n
represents the number of digits, 2^10
represents possible digit masks, and 10
represents digit choices.
Intuition
When faced with counting numbers with "at least one" repeated digit, a direct approach becomes complicated - we'd need to track various cases like exactly one pair of repeated digits, two pairs, three of the same digit, etc. This quickly becomes unwieldy.
The key insight is to use complementary counting: instead of counting what we want directly, count what we don't want and subtract. Numbers with "at least one repeated digit" is the complement of numbers with "all unique digits". So the answer becomes n - count_of_unique_digit_numbers
.
Counting numbers with all unique digits is much cleaner - we just need to ensure each digit we place hasn't been used before. This naturally leads to using a bitmask to track which of the 10 digits (0-9) have been used. If digit j
has been used, we set bit j
in our mask.
Why digit DP? When building numbers digit by digit from left to right, we need to:
- Respect the upper bound
n
(we can't exceed it) - Handle leading zeros properly (they don't count as "used" digits)
- Track our state efficiently across recursive calls
The recursive structure emerges naturally: at each position, try all valid digits (0-9), mark them as used in the mask, and continue building the rest of the number. The limit
flag ensures we don't exceed n
- if we're at the limit and place the maximum allowed digit, the next position remains limited. The lead
flag handles the special case where we haven't placed any non-zero digit yet.
The memoization with @cache
is crucial because many different paths lead to the same state (same position, same used digits, same flags), allowing us to avoid redundant calculations.
Learn more about Math and Dynamic Programming patterns.
Solution Approach
The solution implements digit dynamic programming with state compression. Let's break down the implementation step by step:
1. State Definition
We define a recursive function dfs(i, mask, lead, limit)
with four parameters:
i
: Current digit position (0-indexed from left)mask
: Binary representation of used digits (bitj
is 1 if digitj
has been used)lead
: Boolean indicating if we're still in leading zeroslimit
: Boolean indicating if we're bounded by the original numbern
2. Base Case
if i >= len(s):
return lead ^ 1
When we've processed all digits, we return 1 if we've formed a valid number (not just leading zeros), otherwise 0. The expression lead ^ 1
returns 0 if lead
is True (all zeros), and 1 if lead
is False (valid number).
3. Calculating Upper Bound
up = int(s[i]) if limit else 9
If we're limited by the original number, we can only place digits up to s[i]
. Otherwise, we can use any digit from 0 to 9.
4. Digit Enumeration
For each position, we try all valid digits from 0 to up
:
for j in range(up + 1):
if lead and j == 0:
ans += dfs(i + 1, mask, True, False)
elif mask >> j & 1 ^ 1:
ans += dfs(i + 1, mask | 1 << j, False, limit and j == up)
-
Leading zeros case: If we're still in leading zeros (
lead = True
) and place another 0, we continue with leading zeros without marking 0 as used. The limit becomes False since leading zeros are always less than any positive number. -
Valid digit case: The condition
mask >> j & 1 ^ 1
checks if digitj
hasn't been used yet (equivalent to checking if bitj
in mask is 0). If the digit is available:- We set bit
j
in the mask:mask | 1 << j
- We mark
lead
as False since we've placed a non-zero digit - We update
limit
: it remains True only if we were limited AND placed the maximum digit
- We set bit
5. Memoization
The @cache
decorator automatically memoizes the results, avoiding recalculation for identical states.
6. Final Calculation
s = str(n)
return n - dfs(0, 0, True, True)
We convert n
to string for easy digit access, then subtract the count of numbers with unique digits from n
to get numbers with at least one repeated digit.
The initial call uses:
i = 0
: Start from the leftmost digitmask = 0
: No digits used yetlead = True
: Initially in leading zeroslimit = True
: Initially bounded byn
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's trace through the algorithm with n = 25
to understand how it counts numbers with unique digits.
Goal: Count numbers from 1 to 25 with at least one repeated digit.
Strategy: Count numbers with ALL unique digits, then compute 25 - count
.
Let's trace a few paths through the DFS to see how it builds valid numbers:
Initial Call: dfs(0, 0, True, True)
with string "25"
- Position 0, no digits used (mask=0000000000), in leading zeros, limited by "25"
Building "12":
-
At position 0: Can place 0, 1, or 2 (limited by '2')
- Choose 1:
dfs(1, 0000000010, False, False)
- Mask becomes 0000000010 (bit 1 set)
- No longer in leading zeros, no longer limited (1 < 2)
- Choose 1:
-
At position 1: Can place 0-9 except 1 (already used)
- Choose 2:
dfs(2, 0000000110, False, False)
- Mask becomes 0000000110 (bits 1 and 2 set)
- Choose 2:
-
At position 2: Reached end, return 1 (valid number formed)
Building "22" (will be rejected):
-
At position 0: Choose 2:
dfs(1, 0000000100, False, True)
- Still limited because we placed the maximum digit '2'
-
At position 1: Can only place 0-2 (limited by '2' in "25")
- Try to place 2: Check
mask >> 2 & 1
= 1 (digit 2 already used) - This path is blocked! Cannot reuse digit 2
- Try to place 2: Check
Building "7" (single digit):
-
At position 0: Choose 0 (leading zero):
dfs(1, 0, True, False)
- Remains in leading zeros, mask unchanged
-
At position 1: Choose 7:
dfs(2, 0010000000, False, False)
- Exits leading zeros, marks digit 7 as used
-
At position 2: Reached end, return 1
Complete Count: The algorithm systematically explores all paths, counting valid numbers:
- Single digit numbers with unique digits: 1,2,3,4,5,6,7,8,9 (9 numbers)
- Two digit numbers 10-25 with unique digits: 10,12,13,14,15,16,17,18,19,20,21,23,24,25 (14 numbers)
- Total with unique digits: 23
Final Answer: 25 - 23 = 2
The two numbers with repeated digits are: 11 and 22
Let's work through n = 25
to see how the algorithm counts numbers with at least one repeated digit.
Setup: Convert 25 to string "25" and call dfs(0, 0, True, True)
The algorithm will count numbers from 1-25 that have ALL unique digits, then subtract from 25.
Key paths through the recursion:
Path 1: Building number "12"
- Position 0: Place digit 1
mask = 0000000010
(bit 1 set),lead = False
,limit = False
(1 < 2)
- Position 1: Place digit 2
- Check: Is digit 2 used?
(mask >> 2) & 1 = 0
✓ Available mask = 0000000110
(bits 1,2 set)
- Check: Is digit 2 used?
- Position 2: End reached, return 1 (valid number with unique digits)
Path 2: Attempting "22"
- Position 0: Place digit 2
mask = 0000000100
(bit 2 set),lead = False
,limit = True
(2 = 2)
- Position 1: Try digit 2
- Check: Is digit 2 used?
(mask >> 2) & 1 = 1
✗ Already used! - This branch returns 0 (cannot form valid number)
- Check: Is digit 2 used?
Path 3: Building "7" (single digit)
- Position 0: Place digit 0 (leading zero)
mask = 0
(unchanged),lead = True
,limit = False
- Position 1: Place digit 7
mask = 0010000000
(bit 7 set),lead = False
- Position 2: End reached, return 1
Results Summary:
- Numbers 1-25 with unique digits: 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,23,24,25
- Count = 23
- Numbers with repeated digits = 25 - 23 = 2 (which are 11 and 22)
The algorithm efficiently explores all valid combinations using memoization to avoid recalculating identical states.
Solution Implementation
1class Solution:
2 def numDupDigitsAtMostN(self, n: int) -> int:
3 """
4 Count how many positive integers <= n have at least one repeated digit.
5
6 Strategy: Count numbers without repeated digits, then subtract from n.
7 Uses digit DP with states tracking position, used digits, leading zeros, and upper bound.
8 """
9 from functools import cache
10
11 # Convert n to string for digit-by-digit processing
12 digits_str = str(n)
13
14 @cache
15 def count_unique_digit_numbers(
16 position: int,
17 used_digits_mask: int,
18 has_leading_zeros: bool,
19 is_bounded: bool
20 ) -> int:
21 """
22 Count numbers with unique digits using digit DP.
23
24 Args:
25 position: Current digit position being processed
26 used_digits_mask: Bitmask representing which digits (0-9) have been used
27 has_leading_zeros: True if we haven't placed a non-zero digit yet
28 is_bounded: True if we must respect the upper bound (digits of n)
29
30 Returns:
31 Count of valid numbers from this state
32 """
33 # Base case: processed all digits
34 if position >= len(digits_str):
35 # Return 1 if we've formed a valid number (not just leading zeros)
36 return 0 if has_leading_zeros else 1
37
38 # Determine the maximum digit we can place at this position
39 max_digit = int(digits_str[position]) if is_bounded else 9
40
41 total_count = 0
42
43 # Try each possible digit at current position
44 for digit in range(max_digit + 1):
45 # Handle leading zeros case
46 if has_leading_zeros and digit == 0:
47 # Continue with leading zeros, no longer bounded
48 total_count += count_unique_digit_numbers(
49 position + 1,
50 used_digits_mask,
51 True,
52 False
53 )
54 # Check if digit hasn't been used yet (bit is 0 in mask)
55 elif (used_digits_mask >> digit) & 1 == 0:
56 # Mark digit as used and continue
57 new_mask = used_digits_mask | (1 << digit)
58 # Stay bounded only if we're currently bounded AND using max digit
59 new_bounded = is_bounded and (digit == max_digit)
60
61 total_count += count_unique_digit_numbers(
62 position + 1,
63 new_mask,
64 False,
65 new_bounded
66 )
67
68 return total_count
69
70 # Count numbers without repeated digits from 1 to n
71 unique_digit_count = count_unique_digit_numbers(0, 0, True, True)
72
73 # Numbers with repeated digits = total numbers - numbers without repeated digits
74 return n - unique_digit_count
75
1class Solution {
2 private char[] digitArray;
3 private Integer[][] memoization;
4
5 public int numDupDigitsAtMostN(int n) {
6 // Convert number to character array for digit-by-digit processing
7 digitArray = String.valueOf(n).toCharArray();
8 // Memoization array: [position][bitmask of used digits]
9 // bitmask has 10 bits, each representing whether digit 0-9 has been used
10 memoization = new Integer[digitArray.length][1 << 10];
11 // Total numbers with duplicate digits = n - numbers with all unique digits
12 return n - countUniqueDigitNumbers(0, 0, true, true);
13 }
14
15 /**
16 * Count numbers with all unique digits using digit DP
17 *
18 * @param position Current position in the number being formed (0-indexed)
19 * @param usedDigitsMask Bitmask representing which digits (0-9) have been used
20 * @param hasLeadingZeros True if we haven't placed any non-zero digit yet
21 * @param isBoundedByInput True if current number is still bounded by input n
22 * @return Count of valid numbers with unique digits from current state
23 */
24 private int countUniqueDigitNumbers(int position, int usedDigitsMask,
25 boolean hasLeadingZeros, boolean isBoundedByInput) {
26 // Base case: reached end of number
27 if (position >= digitArray.length) {
28 // If still has leading zeros, it means we formed number 0, which doesn't count
29 return hasLeadingZeros ? 0 : 1;
30 }
31
32 // Use memoization only when not bounded and no leading zeros
33 // (these states can be reused)
34 if (!hasLeadingZeros && !isBoundedByInput && memoization[position][usedDigitsMask] != null) {
35 return memoization[position][usedDigitsMask];
36 }
37
38 // Determine upper bound for current digit
39 int upperBound = isBoundedByInput ? digitArray[position] - '0' : 9;
40 int count = 0;
41
42 // Try each possible digit at current position
43 for (int digit = 0; digit <= upperBound; ++digit) {
44 if (hasLeadingZeros && digit == 0) {
45 // Skip leading zero, don't mark 0 as used
46 count += countUniqueDigitNumbers(position + 1, usedDigitsMask,
47 true, false);
48 } else if ((usedDigitsMask >> digit & 1) == 0) {
49 // Digit hasn't been used, so we can use it
50 // Mark digit as used by setting its bit in the mask
51 count += countUniqueDigitNumbers(position + 1,
52 usedDigitsMask | (1 << digit),
53 false,
54 isBoundedByInput && digit == upperBound);
55 }
56 // If digit was already used, skip it (don't add to count)
57 }
58
59 // Store result in memoization table for reusable states
60 if (!hasLeadingZeros && !isBoundedByInput) {
61 memoization[position][usedDigitsMask] = count;
62 }
63
64 return count;
65 }
66}
67
1class Solution {
2public:
3 int numDupDigitsAtMostN(int n) {
4 // Convert number to string for digit-by-digit processing
5 string numStr = to_string(n);
6 int numDigits = numStr.size();
7
8 // DP memoization table: dp[position][used_digits_bitmask]
9 // -1 indicates unvisited state
10 int dp[numDigits][1 << 10];
11 memset(dp, -1, sizeof(dp));
12
13 // Recursive function to count numbers without repeated digits
14 // Parameters:
15 // - pos: current position in the number (0-indexed from left)
16 // - usedDigitsMask: bitmask representing which digits (0-9) have been used
17 // - isLeadingZero: true if we're still in leading zeros
18 // - isTight: true if we're still bounded by the original number's digits
19 auto countUniqueDigitNumbers = [&](this auto&& countUniqueDigitNumbers,
20 int pos,
21 int usedDigitsMask,
22 bool isLeadingZero,
23 bool isTight) -> int {
24 // Base case: reached the end of the number
25 if (pos >= numDigits) {
26 // Return 1 if we formed a valid number (not all leading zeros), 0 otherwise
27 return isLeadingZero ? 0 : 1;
28 }
29
30 // Check memoization (only valid when not in special states)
31 if (!isLeadingZero && !isTight && dp[pos][usedDigitsMask] != -1) {
32 return dp[pos][usedDigitsMask];
33 }
34
35 // Determine the upper bound for current digit
36 int upperBound = isTight ? (numStr[pos] - '0') : 9;
37 int count = 0;
38
39 // Try each possible digit at current position
40 for (int digit = 0; digit <= upperBound; ++digit) {
41 if (isLeadingZero && digit == 0) {
42 // Still in leading zeros, don't mark 0 as used
43 count += countUniqueDigitNumbers(pos + 1,
44 usedDigitsMask,
45 true,
46 isTight && (digit == upperBound));
47 } else if ((usedDigitsMask >> digit & 1) == 0) {
48 // Digit hasn't been used yet, so we can use it
49 count += countUniqueDigitNumbers(pos + 1,
50 usedDigitsMask | (1 << digit),
51 false,
52 isTight && (digit == upperBound));
53 }
54 // If digit was already used, skip it (no repeated digits allowed)
55 }
56
57 // Store result in memoization table (only for non-special states)
58 if (!isLeadingZero && !isTight) {
59 dp[pos][usedDigitsMask] = count;
60 }
61
62 return count;
63 };
64
65 // Total numbers from 0 to n minus numbers without repeated digits
66 // gives us numbers with repeated digits
67 return n - countUniqueDigitNumbers(0, 0, true, true);
68 }
69};
70
1/**
2 * Counts the number of positive integers with at least one repeated digit
3 * in the range [1, n]
4 * @param n - The upper bound of the range
5 * @returns The count of numbers with repeated digits
6 */
7function numDupDigitsAtMostN(n: number): number {
8 // Convert number to string to process digit by digit
9 const numberString: string = n.toString();
10 const digitCount: number = numberString.length;
11
12 // Memoization table: dp[position][bitmask]
13 // -1 indicates uncomputed state
14 const memoTable: number[][] = Array.from(
15 { length: digitCount },
16 () => Array(1 << 10).fill(-1)
17 );
18
19 /**
20 * Dynamic programming function to count valid numbers without repeated digits
21 * @param position - Current digit position being processed
22 * @param usedDigitsMask - Bitmask representing which digits have been used
23 * @param hasLeadingZeros - Whether we're still in leading zeros
24 * @param isTight - Whether we're still bounded by the original number's digits
25 * @returns Count of valid numbers from this state
26 */
27 const countUniqueDigitNumbers = (
28 position: number,
29 usedDigitsMask: number,
30 hasLeadingZeros: boolean,
31 isTight: boolean
32 ): number => {
33 // Base case: processed all digits
34 if (position >= digitCount) {
35 // Return 1 if we formed a valid number (not just leading zeros)
36 return hasLeadingZeros ? 0 : 1;
37 }
38
39 // Check memoization for non-leading-zero, non-tight states
40 if (!hasLeadingZeros && !isTight && memoTable[position][usedDigitsMask] !== -1) {
41 return memoTable[position][usedDigitsMask];
42 }
43
44 // Determine the maximum digit we can place at current position
45 const maxDigit: number = isTight ? parseInt(numberString[position]) : 9;
46 let validCount: number = 0;
47
48 // Try each possible digit at current position
49 for (let digit = 0; digit <= maxDigit; digit++) {
50 if (hasLeadingZeros && digit === 0) {
51 // Continue with leading zeros
52 validCount += countUniqueDigitNumbers(
53 position + 1,
54 usedDigitsMask,
55 true,
56 isTight && digit === maxDigit
57 );
58 } else if (((usedDigitsMask >> digit) & 1) === 0) {
59 // Digit hasn't been used yet, so we can use it
60 validCount += countUniqueDigitNumbers(
61 position + 1,
62 usedDigitsMask | (1 << digit),
63 false,
64 isTight && digit === maxDigit
65 );
66 }
67 }
68
69 // Memoize result for non-leading-zero, non-tight states
70 if (!hasLeadingZeros && !isTight) {
71 memoTable[position][usedDigitsMask] = validCount;
72 }
73
74 return validCount;
75 };
76
77 // Total numbers with repeated digits = n - (numbers without repeated digits)
78 return n - countUniqueDigitNumbers(0, 0, true, true);
79}
80
Time and Space Complexity
Time Complexity: O(D * 2^10 * D)
where D
is the number of digits in n
.
The time complexity can be analyzed through the memoization states and transitions:
- Parameter
i
ranges from0
toD-1
(number of digits) - Parameter
mask
can have at most2^10
different values (representing which digits 0-9 have been used) - Parameter
lead
has 2 possible values (True/False) - Parameter
limit
has 2 possible values (True/False)
This gives us at most D * 2^10 * 2 * 2 = O(D * 2^10)
unique states. For each state, we iterate through at most 10 digits (0-9), making the total time complexity O(D * 2^10 * 10)
. Since 2^10 = 1024
and we multiply by 10, this simplifies to O(D * 10240)
or O(D * 2^10 * D)
in terms of digit operations.
Space Complexity: O(D * 2^10)
The space complexity comes from:
- The recursion stack depth which is at most
D
(the number of digits) - The memoization cache storing up to
D * 2^10 * 2 * 2
states - The string representation of
n
which takesO(D)
space
The dominant factor is the memoization cache, giving us O(D * 2^10)
space complexity.
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrect Handling of Leading Zeros in the Bitmask
The Pitfall: A common mistake is to mark the digit 0
as "used" when it appears as a leading zero. This would incorrectly prevent valid numbers like 101
, 202
, etc., from being counted.
Why it happens: When we encounter leading zeros, we might intuitively think to mark 0
as used in the bitmask. However, leading zeros don't actually represent the digit 0
in the number - they're just placeholders.
Incorrect approach:
for digit in range(max_digit + 1):
if has_leading_zeros and digit == 0:
# WRONG: marking 0 as used for leading zeros
total_count += count_unique_digit_numbers(
position + 1,
used_digits_mask | (1 << 0), # ❌ Incorrectly setting bit 0
True,
False
)
Correct approach:
for digit in range(max_digit + 1):
if has_leading_zeros and digit == 0:
# CORRECT: Don't mark 0 as used for leading zeros
total_count += count_unique_digit_numbers(
position + 1,
used_digits_mask, # ✓ Keep mask unchanged
True,
False
)
2. Misunderstanding the Limit Flag Update
The Pitfall: Incorrectly updating the is_bounded
flag, particularly forgetting that once we place a digit smaller than the maximum allowed, all subsequent positions become unbounded.
Common mistakes:
- Setting
is_bounded = True
for all recursive calls when currently bounded - Not considering that leading zeros automatically make the number unbounded
Incorrect approach:
# WRONG: Always passing the current bounded state new_bounded = is_bounded # ❌ Doesn't account for digit choice total_count += count_unique_digit_numbers( position + 1, new_mask, False, new_bounded )
Correct approach:
# CORRECT: Only stay bounded if we use the maximum digit new_bounded = is_bounded and (digit == max_digit) # ✓ total_count += count_unique_digit_numbers( position + 1, new_mask, False, new_bounded )
3. Off-by-One Error in Final Calculation
The Pitfall: The problem asks for numbers from 1
to n
with repeated digits, but the digit DP counts all valid numbers including 0
. This can lead to confusion about whether to include or exclude zero.
Why it matters: The function count_unique_digit_numbers
doesn't generate the number 0
when starting with has_leading_zeros = True
because the base case returns 0
for pure leading zeros. This is correct behavior, but it's easy to misunderstand and try to "fix" it.
Incorrect attempts to handle this:
# WRONG: Trying to adjust for zero return n - unique_digit_count + 1 # ❌ Overcounting # WRONG: Starting count from 1 return (n - 1) - unique_digit_count # ❌ Undercounting
Correct approach:
# CORRECT: Direct subtraction works because: # - n represents count of numbers from 1 to n # - unique_digit_count represents numbers from 1 to n with unique digits return n - unique_digit_count # ✓
4. Bit Manipulation Confusion
The Pitfall: Misunderstanding the bit operations for checking and setting digits in the mask.
Common mistakes:
# WRONG: Incorrect check for unused digit if used_digits_mask & (1 << digit) == 0: # Works but less clear # WRONG: Using wrong operator precedence if used_digits_mask >> digit & 1 ^ 1: # Can be confusing without parentheses # WRONG: Checking for used digit instead of unused if (used_digits_mask >> digit) & 1 == 1: # ❌ Logic reversed
Correct and clear approach:
# CORRECT: Check if digit is NOT used (bit is 0) if (used_digits_mask >> digit) & 1 == 0: # ✓ Clear and correct # Mark digit as used new_mask = used_digits_mask | (1 << digit)
These pitfalls often lead to subtle bugs that can be hard to debug because they only affect certain edge cases or ranges of numbers.
What's the output of running the following function using the following tree as input?
1def serialize(root):
2 res = []
3 def dfs(root):
4 if not root:
5 res.append('x')
6 return
7 res.append(root.val)
8 dfs(root.left)
9 dfs(root.right)
10 dfs(root)
11 return ' '.join(res)
12
1import java.util.StringJoiner;
2
3public static String serialize(Node root) {
4 StringJoiner res = new StringJoiner(" ");
5 serializeDFS(root, res);
6 return res.toString();
7}
8
9private static void serializeDFS(Node root, StringJoiner result) {
10 if (root == null) {
11 result.add("x");
12 return;
13 }
14 result.add(Integer.toString(root.val));
15 serializeDFS(root.left, result);
16 serializeDFS(root.right, result);
17}
18
1function serialize(root) {
2 let res = [];
3 serialize_dfs(root, res);
4 return res.join(" ");
5}
6
7function serialize_dfs(root, res) {
8 if (!root) {
9 res.push("x");
10 return;
11 }
12 res.push(root.val);
13 serialize_dfs(root.left, res);
14 serialize_dfs(root.right, res);
15}
16
Recommended Readings
Math for Technical Interviews How much math do I need to know for technical interviews The short answer is about high school level math Computer science is often associated with math and some universities even place their computer science department under the math faculty However the reality is that you
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Want a Structured Path to Master System Design Too? Don’t Miss This!