2016. Maximum Difference Between Increasing Elements
Problem Description
The problem provides us with an array nums
containing integers, where our task is to find the maximum difference between two of its elements, nums[i]
and nums[j]
, with the condition that i
is less than j
(that is i < j
) and nums[i]
is less than nums[j]
(nums[i] < nums[j]
). The maximum difference is defined as nums[j] - nums[i]
. The constraints are such that i
and j
must be valid indices within the array (0 <= i < j < n
). If no such pair of indices exists, the function should return -1
.
Intuition
The solution to this problem is driven by a single pass approach that keeps track of the smallest element found so far while iterating through the array. The idea is to continuously update the smallest element mi
as we move through the array and simultaneously compute the difference between the current element and this smallest element whenever the current element is larger than mi
.
The steps are as follows:
- Initialize a variable
mi
to store the minimum value found so far; set it toinf
(infinity) at the start because we haven't encountered any elements in the array yet. - Initialize a variable
ans
to store the maximum difference found; set it to-1
to indicate that no valid difference has been calculated yet. - Iterate over each element
x
in thenums
array.- If the current element
x
is greater than the current minimummi
, then there's potential for a larger difference. Calculate the differencex - mi
and updateans
to be the maximum ofans
and this newly calculated difference. - If the current element
x
is not greater thanmi
, then we updatemi
to be the current elementx
, since it's the new minimum.
- If the current element
After iterating through the entire array, ans
will contain the maximum difference found following the given criteria, or it will remain -1
if no such pair was found (meaning the array was non-increasing). This approach is efficient as it only requires a single pass through the array, hence the time complexity is O(n), where n is the number of elements in nums
.
Solution Approach
The implementation of the solution utilizes a simple linear scanning algorithm that operates in a single pass through the array. No complex data structures are needed; only a couple of variables are used to keep track of the state as we iterate. Here is a more detailed breakdown of the approach:
-
We have an array
nums
of integers. -
Two variables are initialized:
mi
: This is initially set toinf
, representing an "infinity" value which ensures that any element we encounter will be less than this value.mi
serves as the minimum value encounter so far as we iterate through the array.ans
: This is the answer variable, initialized to-1
. It will store the maximum difference encountered that satisfies the problem's condition.
-
We begin iterating over each element
x
in thenums
array using afor
loop.- If the current element
x
is greater thanmi
, it means we've found a new pair that could potentially lead to a larger difference. In this case, we find the difference betweenx
andmi
and updateans
to be the maximum of itself and this new difference. This step uses themax
function:ans = max(ans, x - mi)
. - If
x
is not greater thanmi
, then the current elementx
becomes the new minimum, which updatesmi
tox
. It's a crucial step, as this update is necessary to ensure we always have the smallest value seen so far, which allows us to find the largest possible difference.
- If the current element
-
After the loop completes, the
ans
variable will hold the maximum difference possible. Ifans
remained-1
, it implies there was no valid(i, j)
pair that satisfied the condition (nums[i] < nums[j]
withi < j
).
The use of the infinity value for mi
is a common pattern to simplify code as it avoids the need for special checks on the index being valid or the array being non-empty. Similarly, using -1
for ans
follows a typical convention to indicate that a satisfying condition was not found during the computation.
The algorithm's simplicity and the lack of additional data structures contribute to its time efficiency, making it a solution with O(n) time complexity, where n
is the number of elements in nums
.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's illustrate the solution approach with a small example. Suppose we have the following array nums
:
nums = [7, 1, 5, 3, 6, 4]
Our task is to find the maximum difference nums[j] - nums[i]
with the conditions that i < j
and nums[i] < nums[j]
.
We'll initialize our variables mi
and ans
:
mi
is set toinf
, which in practical scenarios can be represented by a very large number, assuming the array does not contain larger numbers.ans
is set to-1
as we've not yet found a valid pair.
Now we begin iterating through the array nums
:
-
First element (7):
mi
isinf
, so we updatemi
to be 7.- No difference is calculated because this is the first element.
-
Second element (1):
1
is less thanmi
(which is 7), so we now updatemi
to 1.- The
ans
is still-1
because we didn't find a larger element yet.
-
Third element (5):
5
is greater thanmi
(which is 1), so we calculate the difference (5 - 1 = 4).- Now, we update
ans
to the maximum of-1
and 4, which is 4.
-
Fourth element (3):
3
is greater thanmi
(1), so we calculate the difference (3 - 1 = 2).ans
remains 4 because 4 is greater than 2.
-
Fifth element (6):
6
is greater thanmi
(1), so we calculate the difference (6 - 1 = 5).- Update
ans
to 5, since that's greater than the currentans
of 4.
-
Sixth element (4):
4
is greater thanmi
(1), so we calculate the difference (4 - 1 = 3).ans
remains 5, as it is still the maximum difference found.
At the end of the iteration, ans
contains the value 5
, which is the maximum difference obtained by subtracting an earlier, smaller number from a later, larger number in the array, satisfying nums[j] - nums[i]
where i < j
and nums[i] < nums[j]
.
Therefore, the maximum difference in the given array nums
is 5
.
Solution Implementation
1class Solution:
2 def maximumDifference(self, nums: List[int]) -> int:
3 # Initialize the minimum value seen so far to infinity
4 min_val = float('inf')
5 # Initialize the maximum difference as -1 (default if not found)
6 max_diff = -1
7
8 # Iterate over each number in the list
9 for num in nums:
10 # If the current number is greater than the minimum value seen,
11 # there is a potential for a new maximum difference
12 if num > min_val:
13 # Update the maximum difference if the current difference
14 # is greater than the previous maximum difference
15 max_diff = max(max_diff, num - min_val)
16 else:
17 # If the current number is not greater than the minimum value seen,
18 # update the minimum value to the current number
19 min_val = num
20
21 # Return the maximum difference found; if no valid difference was found,
22 # this will return -1
23 return max_diff
24
1class Solution {
2 public int maximumDifference(int[] nums) {
3 // Initialize the minimum value to a very large value
4 int minVal = Integer.MAX_VALUE;
5 // Initialize the answer to -1, assuming there is no positive difference found
6 int maxDiff = -1;
7
8 // Loop through each number in the input array
9 for (int num : nums) {
10 // If the current number is greater than the minimum value found so far
11 if (num > minVal) {
12 // Update the maximum difference with the greater value between the current maximum difference
13 // and the difference between the current number and the minimum value found so far
14 maxDiff = Math.max(maxDiff, num - minVal);
15 } else {
16 // If the current number is not greater than the minimum value found so far,
17 // then update the minimum value to the current number
18 minVal = num;
19 }
20 }
21
22 // Return the maximum difference found, or -1 if no positive difference exists
23 return maxDiff;
24 }
25}
26
1class Solution {
2public:
3 int maximumDifference(vector<int>& nums) {
4 // Initialize min_value with a large number well above any expected input.
5 int min_value = INT_MAX; // INT_MAX is more idiomatic than 1 << 30.
6
7 // Initialize the answer with -1, indicating no positive difference found yet.
8 int max_difference = -1;
9
10 // Iterate over each number in the input vector 'nums'.
11 for (int num : nums) {
12 // If the current number is larger than the min_value seen so far,
13 // update max_difference with the greater of current max_difference and
14 // the difference between current number and min_value.
15 if (num > min_value) {
16 max_difference = max(max_difference, num - min_value);
17 } else {
18 // If the current number is smaller than min_value, update min_value
19 // with the current number.
20 min_value = num;
21 }
22 }
23
24 // Return the maximum positive difference found, or -1 if no such difference exists.
25 return max_difference;
26 }
27};
28
1function maximumDifference(nums: number[]): number {
2 // detn is the length of the nums array
3 const numElements = nums.length;
4 // Initialize the minimum value to the first element of the nums array
5 let minimumValue = nums[0];
6 // Initialize the maximum difference as -1; this will change if a greater difference is found
7 let maxDifference = -1;
8
9 // Loop through the array starting from the second element
10 for (let index = 1; index < numElements; index++) {
11 // Calculate the current difference and update the maxDifference if the current difference is greater
12 maxDifference = Math.max(maxDifference, nums[index] - minimumValue);
13 // Update the minimumValue with the smallest number encountered so far
14 minimumValue = Math.min(minimumValue, nums[index]);
15 }
16
17 // If no positive maximum difference was found, return -1; otherwise, return the maxDifference
18 return maxDifference > 0 ? maxDifference : -1;
19}
20
Time and Space Complexity
The time complexity of the provided code can be analyzed by looking at the operations within the main loop. The code iterates through the list of numbers once, performing constant-time operations within each iteration, such as comparison, subtraction, and assignment. Thus, the time complexity is O(n)
where n
is the length of the input list nums
.
For space complexity, the code uses a fixed amount of additional memory to store the variables mi
and ans
. Regardless of the size of the input list, this does not change, which means the space complexity is constant, or O(1)
.
Learn more about how to find time and space complexity quickly using problem constraints.
What's the output of running the following function using input 56
?
1KEYBOARD = {
2 '2': 'abc',
3 '3': 'def',
4 '4': 'ghi',
5 '5': 'jkl',
6 '6': 'mno',
7 '7': 'pqrs',
8 '8': 'tuv',
9 '9': 'wxyz',
10}
11
12def letter_combinations_of_phone_number(digits):
13 def dfs(path, res):
14 if len(path) == len(digits):
15 res.append(''.join(path))
16 return
17
18 next_number = digits[len(path)]
19 for letter in KEYBOARD[next_number]:
20 path.append(letter)
21 dfs(path, res)
22 path.pop()
23
24 res = []
25 dfs([], res)
26 return res
27
1private static final Map<Character, char[]> KEYBOARD = Map.of(
2 '2', "abc".toCharArray(),
3 '3', "def".toCharArray(),
4 '4', "ghi".toCharArray(),
5 '5', "jkl".toCharArray(),
6 '6', "mno".toCharArray(),
7 '7', "pqrs".toCharArray(),
8 '8', "tuv".toCharArray(),
9 '9', "wxyz".toCharArray()
10);
11
12public static List<String> letterCombinationsOfPhoneNumber(String digits) {
13 List<String> res = new ArrayList<>();
14 dfs(new StringBuilder(), res, digits.toCharArray());
15 return res;
16}
17
18private static void dfs(StringBuilder path, List<String> res, char[] digits) {
19 if (path.length() == digits.length) {
20 res.add(path.toString());
21 return;
22 }
23 char next_digit = digits[path.length()];
24 for (char letter : KEYBOARD.get(next_digit)) {
25 path.append(letter);
26 dfs(path, res, digits);
27 path.deleteCharAt(path.length() - 1);
28 }
29}
30
1const KEYBOARD = {
2 '2': 'abc',
3 '3': 'def',
4 '4': 'ghi',
5 '5': 'jkl',
6 '6': 'mno',
7 '7': 'pqrs',
8 '8': 'tuv',
9 '9': 'wxyz',
10}
11
12function letter_combinations_of_phone_number(digits) {
13 let res = [];
14 dfs(digits, [], res);
15 return res;
16}
17
18function dfs(digits, path, res) {
19 if (path.length === digits.length) {
20 res.push(path.join(''));
21 return;
22 }
23 let next_number = digits.charAt(path.length);
24 for (let letter of KEYBOARD[next_number]) {
25 path.push(letter);
26 dfs(digits, path, res);
27 path.pop();
28 }
29}
30
Recommended Readings
LeetCode Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way we
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https algomonster s3 us east 2 amazonaws com recursion jpg You first
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!