2183. Count Array Pairs Divisible by K


Problem Description

Given an array nums and an integer k, we have to find the number of pairs (i,j) such that the product of nums[i] and nums[j] is divisible by k. Note that k can be as large as 1e5.

Here's a high-level approach to solving this problem:

  1. Calculate the greatest common divisor (gcd) of each value in nums with k.

  2. Then, for each pair (nums[i], nums[j]), check if their gcd values multiplied together are divisible by k. If yes, add them to the count.

Let's walk through an example to better understand the approach.

Example

Suppose nums = [1, 2, 3, 4, 5] and k = 6. We first find the gcd values for each element in the array nums with k.

1 x 6 = 6, gcd(1, 6) = 1 2 x 3 = 6, gcd(2, 6) = 2 3 x 2 = 6, gcd(3, 6) = 3 4 x 1.5 = 6, gcd(4, 6) = 2 5 x 1.2 = 6, gcd(5, 6) = 1

Now the gcd values are [1, 2, 3, 2, 1].

We go through each pair of gcd values and check if their product is divisible by k. In our example:

(1, 2) - No (1, 3) - No (1, 2) - No (1, 1) - No (2, 3) - Yes (2, 2) - No (2, 1) - No (3, 2) - Yes (3, 1) - No (2, 1) - No

We find two pairs that are divisible by k: (2, 3) and (3, 2). So the final answer is 2.

Solution

Python


python
from math import gcd
from typing import List


class Solution:
    def countPairs(self, nums: List[int], k: int) -> int:
        ans = 0
        gcds = {}
        
        for num in nums:
            gcd_num = gcd(num, k)
            for gcd_val, count in gcds.items():
                if gcd_num * gcd_val % k == 0:
                    ans += count
            gcds[gcd_num] = gcds.get(gcd_num, 0) + 1
        
        return ans

Java


java
import java.util.HashMap;
import java.util.Map;

class Solution {
    public long countPairs(int[] nums, int k) {
        long ans = 0;
        Map<Integer, Integer> gcds = new HashMap<>();
        
        for (int num : nums) {
            int gcdNum = gcd(num, k);
            for (Map.Entry<Integer, Integer> entry : gcds.entrySet()) {
                if (gcdNum * entry.getKey() % k == 0) {
                    ans += entry.getValue();
                }
            }
            gcds.put(gcdNum, gcds.getOrDefault(gcdNum, 0) + 1);
        }
        
        return ans;
    }
    
    private int gcd(int a, int b) {
        if (b == 0) {
            return a;
        } else {
            return gcd(b, a % b);
        }
    }
}

JavaScript


javascript
class Solution {
    countPairs(nums, k) {
        let ans = 0;
        const gcds = new Map();
        
        for (const num of nums) {
            const gcdNum = this.gcd(num, k);
            for (const [gcdVal, count] of gcds.entries()) {
                if (gcdNum * gcdVal % k === 0) {
                    ans += count;
                }
            }
            gcds.set(gcdNum, (gcds.get(gcdNum) || 0) + 1);
        }
        
        return ans;
    }
    
    gcd(a, b) {
        if (b === 0) {
            return a;
        } else {
            return this.gcd(b, a % b);
        }
    }
}

C++


cpp
#include <unordered_map>

class Solution {
public:
    long long countPairs(vector<int>& nums, int k) {
        long ans = 0;
        unordered_map<int, int> gcds;
        
        for (const int num : nums) {
            const int gcdNum = gcd(num, k);
            for (const auto& [gcdVal, count] : gcds) {
                if (gcdNum * gcdVal % k == 0) {
                    ans += count;
                }
            }
            ++gcds[gcdNum];
        }
        
        return ans;
    }
    
private:
    int gcd(int a, int b) {
        if (b == 0) {
            return a;
        } else {
            return gcd(b, a % b);
        }
    }
};

C#


csharp
using System.Collections.Generic;

public class Solution {
    public long CountPairs(int[] nums, int k) {
        long ans = 0;
        Dictionary<int, int> gcds = new Dictionary<int, int>();
        
        foreach (int num in nums) {
            int gcdNum = GCD(num, k);
            foreach (KeyValuePair<int, int> entry in gcds) {
                if (gcdNum * entry.Key % k == 0) {
                    ans += entry.Value;
                }
            }
            if (gcds.ContainsKey(gcdNum)) {
                gcds[gcdNum]++;
            } else {
                gcds[gcdNum] = 1;
            }
        }
        
        return ans;
    }
    
    private int GCD(int a, int b) {
        if (b == 0) {
            return a;
        } else {
            return GCD(b, a % b);
        }
    }
}

In conclusion, the above solutions follow the high-level approach explained earlier and find the count of pairs such that their product is divisible by k. Each solution utilizes the greatest common divisor (gcd) function to calculate the gcd values, iterate through each pair of gcd values, and check if their product is divisible by k. The implementation is provided in Python, Java, JavaScript, C++, and C#.

Ready to land your dream job?

Unlock your dream job with a 2-minute evaluator for a personalized learning plan!

Start Evaluator
Discover Your Strengths and Weaknesses: Take Our 2-Minute Quiz to Tailor Your Study Plan:
Question 1 out of 10

What are the two properties the problem needs to have for dynamic programming to be applicable? (Select 2)


Recommended Readings

Want a Structured Path to Master System Design Too? Don’t Miss This!