Facebook Pixel

2736. Maximum Sum Queries

Problem Description

You have two arrays nums1 and nums2, both containing integers and having the same length n. The arrays are 0-indexed.

You're also given a list of queries, where each query queries[i] contains two values: [xi, yi].

For each query, you need to find the maximum possible sum nums1[j] + nums2[j] where:

  • The index j must satisfy: 0 <= j < n
  • nums1[j] must be greater than or equal to xi
  • nums2[j] must be greater than or equal to yi

If no valid index j exists that satisfies both conditions, the answer for that query is -1.

Your task is to return an array where each element corresponds to the answer for each query in order.

Example:

If nums1 = [4, 3, 1, 2] and nums2 = [2, 4, 9, 5], and you have a query [x=3, y=4]:

  • Index 0: nums1[0]=4 >= 3 and nums2[0]=2 < 4 - doesn't satisfy both conditions
  • Index 1: nums1[1]=3 >= 3 and nums2[1]=4 >= 4 - satisfies both conditions, sum = 3+4 = 7
  • Index 2: nums1[2]=1 < 3 - doesn't satisfy the first condition
  • Index 3: nums1[3]=2 < 3 - doesn't satisfy the first condition

The maximum valid sum would be 7 from index 1.

Quick Interview Experience
Help others by sharing your interview experience
Have you seen this problem before?

Intuition

The naive approach would be to check every index for every query, but this would be inefficient with time complexity O(m * n) where m is the number of queries and n is the array length.

The key insight is recognizing this as a two-dimensional constraint problem: for each query, we need indices where both nums1[j] >= x AND nums2[j] >= y. When dealing with two dimensions, we can often optimize by sorting one dimension and using a data structure to efficiently handle the other.

Let's think about how sorting helps. If we sort queries by their x values in descending order, we can process them from largest to smallest x. As we move to queries with smaller x values, more indices from nums1 become valid (since the constraint nums1[j] >= x becomes easier to satisfy). This means we can incrementally add valid indices as we process queries.

Similarly, if we sort the pairs (nums1[i], nums2[i]) by nums1 values in descending order, we can efficiently find all indices where nums1[j] >= x by maintaining a pointer that moves forward as we process queries with decreasing x values.

Now the challenge becomes: among all indices where nums1[j] >= x, how do we quickly find the maximum nums1[j] + nums2[j] where nums2[j] >= y?

This is where the Binary Indexed Tree (Fenwick Tree) comes in. As we process queries and add valid indices based on the nums1 constraint, we can insert these values into a BIT organized by nums2 values. The BIT allows us to efficiently query for the maximum sum among all entries where nums2[j] >= y.

The trick is to discretize the nums2 values (map them to ranks) so we can use them as indices in the BIT. By storing the maximum nums1[j] + nums2[j] at each position, we can query for the maximum sum in the range where nums2[j] >= y in O(log n) time.

This approach reduces the overall complexity from O(m * n) to O((n + m) * log n + m * log m), making it much more efficient for large inputs.

Learn more about Stack, Segment Tree, Binary Search, Sorting and Monotonic Stack patterns.

Solution Approach

The solution implements a Binary Indexed Tree (BIT) to efficiently handle the two-dimensional partial order problem. Let's walk through the implementation step by step:

1. Binary Indexed Tree Implementation:

The BinaryIndexedTree class maintains an array c where c[x] stores the maximum value for a range. The tree supports:

  • update(x, v): Updates position x with value v if v is greater than the current maximum
  • query(x): Returns the maximum value in the range [1, x]

The BIT uses the property that x & -x gives the rightmost set bit, allowing efficient range updates and queries in O(log n) time.

2. Main Algorithm:

nums = sorted(zip(nums1, nums2), key=lambda x: -x[0])

First, we create pairs of (nums1[i], nums2[i]) and sort them in descending order by the first element. This allows us to process elements with larger nums1 values first.

nums2.sort()

We sort nums2 separately to enable binary search for discretization. This sorted array helps us map nums2 values to indices for the BIT.

for i in sorted(range(m), key=lambda i: -queries[i][0]):

We process queries in descending order of their x values. This ensures that as we move to smaller x values, we can incrementally add more valid elements.

3. Processing Each Query:

For each query (x, y):

while j < n and nums[j][0] >= x:
    k = n - bisect_left(nums2, nums[j][1])
    tree.update(k, nums[j][0] + nums[j][1])
    j += 1
  • We add all pairs where nums1 >= x to the BIT
  • bisect_left(nums2, nums[j][1]) finds the position of nums[j][1] in the sorted nums2
  • We use k = n - bisect_left(...) to reverse the index (storing larger values at smaller indices in BIT)
  • We update the BIT at position k with the sum nums[j][0] + nums[j][1]
k = n - bisect_left(nums2, y)
ans[i] = tree.query(k)
  • We find the discretized position for y
  • Query the BIT for the maximum sum where nums2 >= y
  • Store the result in the appropriate position of the answer array

4. Why This Works:

The algorithm maintains the invariant that when processing query i, the BIT contains all pairs where nums1 >= queries[i][0]. By organizing the BIT by nums2 values (in reverse order), querying position k gives us the maximum sum among all pairs where both constraints are satisfied.

The reverse indexing (n - bisect_left(...)) is crucial because BIT naturally handles prefix maximum queries. By reversing the indices, a prefix query on the BIT becomes a suffix query on the original nums2 values, which corresponds to finding values >= y.

Time Complexity: O((n + m) × log n + m × log m)

  • Sorting: O(n log n + m log m)
  • Processing queries: O(m log n) for binary searches
  • BIT operations: O(n log n) for updates and O(m log n) for queries

Space Complexity: O(n + m) for the BIT and result array

Ready to land your dream job?

Unlock your dream job with a 5-minute evaluator for a personalized learning plan!

Start Evaluator

Example Walkthrough

Let's walk through a small example to illustrate the solution approach.

Given:

  • nums1 = [4, 3, 1, 2]
  • nums2 = [2, 4, 9, 5]
  • queries = [[3, 4], [1, 8], [5, 1]]

Step 1: Prepare the data

First, create pairs and sort them by nums1 descending:

  • Original pairs: [(4,2), (3,4), (1,9), (2,5)]
  • Sorted pairs: [(4,2), (3,4), (2,5), (1,9)]

Sort nums2 for discretization: [2, 4, 5, 9]

Sort query indices by x-value descending:

  • Query 0: [3, 4] (x=3)
  • Query 1: [1, 8] (x=1)
  • Query 2: [5, 1] (x=5)
  • Processing order: Query 2 → Query 0 → Query 1

Step 2: Process Query 2 [x=5, y=1]

Initialize: j = 0, BIT is empty

Check pairs where nums1 >= 5:

  • Pair (4,2): 4 < 5 ❌ - stop here

No valid pairs added to BIT.

Query BIT for y=1:

  • Find position: k = 4 - bisect_left([2,4,5,9], 1) = 4 - 0 = 4
  • BIT.query(4) returns -1 (no valid pairs)

Result: ans[2] = -1

Step 3: Process Query 0 [x=3, y=4]

Current: j = 0, BIT is empty

Add pairs where nums1 >= 3:

  • Pair (4,2): 4 >= 3
    • Find position: k = 4 - bisect_left([2,4,5,9], 2) = 4 - 0 = 4
    • BIT.update(4, 4+2=6)
  • Pair (3,4): 3 >= 3
    • Find position: k = 4 - bisect_left([2,4,5,9], 4) = 4 - 1 = 3
    • BIT.update(3, 3+4=7)
  • Pair (2,5): 2 < 3 ❌ - stop here

Now j = 2, BIT contains: {position 4: sum=6, position 3: sum=7}

Query BIT for y=4:

  • Find position: k = 4 - bisect_left([2,4,5,9], 4) = 4 - 1 = 3
  • BIT.query(3) returns max(values at positions 1-3) = 7

Result: ans[0] = 7

Step 4: Process Query 1 [x=1, y=8]

Current: j = 2, BIT has pairs (4,2) and (3,4)

Add pairs where nums1 >= 1:

  • Pair (2,5): 2 >= 1
    • Find position: k = 4 - bisect_left([2,4,5,9], 5) = 4 - 2 = 2
    • BIT.update(2, 2+5=7)
  • Pair (1,9): 1 >= 1
    • Find position: k = 4 - bisect_left([2,4,5,9], 9) = 4 - 3 = 1
    • BIT.update(1, 1+9=10)

Now j = 4, BIT contains all pairs

Query BIT for y=8:

  • Find position: k = 4 - bisect_left([2,4,5,9], 8) = 4 - 3 = 1
  • BIT.query(1) returns max(values at position 1) = 10

Result: ans[1] = 10

Final Answer: [7, 10, -1]

The key insight is that by processing queries in descending order of x-values, we incrementally add valid pairs to the BIT. The BIT, organized by discretized nums2 values in reverse order, allows us to efficiently find the maximum sum among pairs satisfying both constraints.

Solution Implementation

1from typing import List
2from bisect import bisect_left
3
4
5class BinaryIndexedTree:
6    """
7    Binary Indexed Tree (Fenwick Tree) for range maximum queries.
8    This implementation supports updating and querying maximum values.
9    """
10    __slots__ = ["size", "tree"]
11  
12    def __init__(self, n: int) -> None:
13        """
14        Initialize the Binary Indexed Tree.
15      
16        Args:
17            n: Size of the tree
18        """
19        self.size = n
20        self.tree = [-1] * (n + 1)  # 1-indexed array, initialized with -1
21  
22    def update(self, index: int, value: int) -> None:
23        """
24        Update the tree with a new value at the given index.
25        Only updates if the new value is greater than existing.
26      
27        Args:
28            index: Position to update (1-indexed)
29            value: Value to update with
30        """
31        while index <= self.size:
32            self.tree[index] = max(self.tree[index], value)
33            # Move to next index affected by this update
34            index += index & -index
35  
36    def query(self, index: int) -> int:
37        """
38        Query the maximum value from index 1 to the given index.
39      
40        Args:
41            index: Upper bound of the query range (1-indexed)
42          
43        Returns:
44            Maximum value in the range [1, index]
45        """
46        max_value = -1
47        while index > 0:
48            max_value = max(max_value, self.tree[index])
49            # Move to parent node
50            index -= index & -index
51        return max_value
52
53
54class Solution:
55    def maximumSumQueries(
56        self, nums1: List[int], nums2: List[int], queries: List[List[int]]
57    ) -> List[int]:
58        """
59        Find maximum sum of pairs (nums1[i], nums2[i]) for each query.
60        Each query [x, y] asks for max(nums1[i] + nums2[i]) where 
61        nums1[i] >= x and nums2[i] >= y.
62      
63        Args:
64            nums1: First array of integers
65            nums2: Second array of integers  
66            queries: List of [x, y] queries
67          
68        Returns:
69            List of maximum sums for each query, -1 if no valid pair exists
70        """
71        # Create pairs and sort by nums1 values in descending order
72        pairs = sorted(zip(nums1, nums2), key=lambda pair: -pair[0])
73      
74        # Sort nums2 for binary search
75        nums2.sort()
76      
77        n = len(nums1)
78        m = len(queries)
79        result = [-1] * m
80      
81        # Initialize Binary Indexed Tree
82        fenwick_tree = BinaryIndexedTree(n)
83      
84        # Process queries in descending order of x values
85        pair_index = 0
86        for query_index in sorted(range(m), key=lambda i: -queries[i][0]):
87            query_x, query_y = queries[query_index]
88          
89            # Add all pairs with nums1[i] >= query_x to the tree
90            while pair_index < n and pairs[pair_index][0] >= query_x:
91                # Find position in sorted nums2 array
92                # Use n - position to convert to descending order for tree
93                position = n - bisect_left(nums2, pairs[pair_index][1])
94                sum_value = pairs[pair_index][0] + pairs[pair_index][1]
95                fenwick_tree.update(position, sum_value)
96                pair_index += 1
97          
98            # Query for maximum sum where nums2[i] >= query_y
99            position = n - bisect_left(nums2, query_y)
100            result[query_index] = fenwick_tree.query(position)
101      
102        return result
103
1class BinaryIndexedTree {
2    private int size;
3    private int[] tree;
4
5    /**
6     * Initialize a Binary Indexed Tree (Fenwick Tree) for range maximum queries
7     * @param size The size of the tree
8     */
9    public BinaryIndexedTree(int size) {
10        this.size = size;
11        tree = new int[size + 1];
12        Arrays.fill(tree, -1);
13    }
14
15    /**
16     * Update the tree by setting maximum value at index and propagating upwards
17     * @param index The 1-based index to update
18     * @param value The value to update with (will keep maximum)
19     */
20    public void update(int index, int value) {
21        while (index <= size) {
22            tree[index] = Math.max(tree[index], value);
23            // Move to next index by adding the lowest set bit
24            index += index & -index;
25        }
26    }
27
28    /**
29     * Query the maximum value in range [1, index]
30     * @param index The 1-based index to query up to
31     * @return The maximum value in the range
32     */
33    public int query(int index) {
34        int maxValue = -1;
35        while (index > 0) {
36            maxValue = Math.max(maxValue, tree[index]);
37            // Move to parent by removing the lowest set bit
38            index -= index & -index;
39        }
40        return maxValue;
41    }
42}
43
44class Solution {
45    /**
46     * Find maximum sum for each query where nums1[i] >= x and nums2[i] >= y
47     * @param nums1 First array of numbers
48     * @param nums2 Second array of numbers
49     * @param queries Array of queries, each containing [x, y]
50     * @return Array of maximum sums for each query, or -1 if no valid pair exists
51     */
52    public int[] maximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {
53        int n = nums1.length;
54      
55        // Combine nums1 and nums2 into pairs for easier processing
56        int[][] numberPairs = new int[n][2];
57        for (int i = 0; i < n; ++i) {
58            numberPairs[i] = new int[] {nums1[i], nums2[i]};
59        }
60      
61        // Sort pairs by first element in descending order
62        Arrays.sort(numberPairs, (a, b) -> b[0] - a[0]);
63      
64        // Sort nums2 for binary search operations
65        Arrays.sort(nums2);
66      
67        // Create index array to process queries in sorted order
68        int queryCount = queries.length;
69        Integer[] queryIndices = new Integer[queryCount];
70        for (int i = 0; i < queryCount; ++i) {
71            queryIndices[i] = i;
72        }
73      
74        // Sort query indices by x value in descending order
75        Arrays.sort(queryIndices, (i, j) -> queries[j][0] - queries[i][0]);
76      
77        int[] results = new int[queryCount];
78        int pairIndex = 0;
79        BinaryIndexedTree fenwickTree = new BinaryIndexedTree(n);
80      
81        // Process queries in descending order of x values
82        for (int currentQueryIndex : queryIndices) {
83            int xThreshold = queries[currentQueryIndex][0];
84            int yThreshold = queries[currentQueryIndex][1];
85          
86            // Add all pairs with first element >= xThreshold to the tree
87            while (pairIndex < n && numberPairs[pairIndex][0] >= xThreshold) {
88                // Find position of second element in sorted nums2 array
89                int position = n - Arrays.binarySearch(nums2, numberPairs[pairIndex][1]);
90                // Update tree with sum of the pair
91                fenwickTree.update(position, numberPairs[pairIndex][0] + numberPairs[pairIndex][1]);
92                pairIndex++;
93            }
94          
95            // Find position for yThreshold in sorted nums2
96            int searchResult = Arrays.binarySearch(nums2, yThreshold);
97            // Convert binary search result to valid tree index
98            int treePosition = searchResult >= 0 ? n - searchResult : n + searchResult + 1;
99            // Query maximum sum for elements with second value >= yThreshold
100            results[currentQueryIndex] = fenwickTree.query(treePosition);
101        }
102      
103        return results;
104    }
105}
106
1class BinaryIndexedTree {
2private:
3    int size;
4    vector<int> tree;
5
6public:
7    // Initialize BIT with given size
8    BinaryIndexedTree(int n) {
9        this->size = n;
10        tree.resize(n + 1, -1);  // 1-indexed array, initialize with -1
11    }
12
13    // Update position x with maximum value v
14    void update(int position, int value) {
15        while (position <= size) {
16            tree[position] = max(tree[position], value);
17            position += position & -position;  // Move to next position using lowbit
18        }
19    }
20
21    // Query maximum value in range [1, x]
22    int query(int position) {
23        int maxValue = -1;
24        while (position > 0) {
25            maxValue = max(maxValue, tree[position]);
26            position -= position & -position;  // Move to parent using lowbit
27        }
28        return maxValue;
29    }
30};
31
32class Solution {
33public:
34    vector<int> maximumSumQueries(vector<int>& nums1, vector<int>& nums2, vector<vector<int>>& queries) {
35        // Create pairs of (negated nums1, nums2) for sorting
36        vector<pair<int, int>> numPairs;
37        int n = nums1.size();
38        int m = queries.size();
39      
40        for (int i = 0; i < n; ++i) {
41            numPairs.emplace_back(-nums1[i], nums2[i]);  // Negate for descending order
42        }
43      
44        // Sort pairs by first element (negated nums1) in ascending order
45        // This gives us nums1 in descending order
46        sort(numPairs.begin(), numPairs.end());
47      
48        // Sort nums2 for binary search later
49        sort(nums2.begin(), nums2.end());
50      
51        // Create query indices array for sorting queries
52        vector<int> queryIndices(m);
53        iota(queryIndices.begin(), queryIndices.end(), 0);  // Fill with 0, 1, 2, ..., m-1
54      
55        // Sort query indices by x value in descending order
56        sort(queryIndices.begin(), queryIndices.end(), 
57             [&](int i, int j) { return queries[j][0] < queries[i][0]; });
58      
59        vector<int> result(m);
60        int pairIndex = 0;
61        BinaryIndexedTree fenwickTree(n);
62      
63        // Process queries in descending order of x
64        for (int queryIdx : queryIndices) {
65            int xThreshold = queries[queryIdx][0];
66            int yThreshold = queries[queryIdx][1];
67          
68            // Add all pairs where nums1[i] >= xThreshold to the BIT
69            while (pairIndex < n && -numPairs[pairIndex].first >= xThreshold) {
70                // Find rank of current y value in sorted nums2
71                int yRank = nums2.end() - lower_bound(nums2.begin(), nums2.end(), 
72                                                      numPairs[pairIndex].second);
73                // Update BIT with sum of current pair
74                fenwickTree.update(yRank, -numPairs[pairIndex].first + numPairs[pairIndex].second);
75                pairIndex++;
76            }
77          
78            // Query maximum sum where y >= yThreshold
79            int yRank = nums2.end() - lower_bound(nums2.begin(), nums2.end(), yThreshold);
80            result[queryIdx] = fenwickTree.query(yRank);
81        }
82      
83        return result;
84    }
85};
86
1// Binary Indexed Tree (Fenwick Tree) for range maximum queries
2let n: number;
3let c: number[];
4
5// Initialize the BIT with size n
6function initBIT(size: number): void {
7    n = size;
8    c = Array(size + 1).fill(-1);
9}
10
11// Update the BIT at position x with maximum value v
12function update(x: number, v: number): void {
13    while (x <= n) {
14        c[x] = Math.max(c[x], v);
15        x += x & -x; // Move to next index using lowbit operation
16    }
17}
18
19// Query the maximum value from index 1 to x
20function query(x: number): number {
21    let maxValue = -1;
22    while (x > 0) {
23        maxValue = Math.max(maxValue, c[x]);
24        x -= x & -x; // Move to parent index using lowbit operation
25    }
26    return maxValue;
27}
28
29// Binary search to find the first index where nums2[index] >= target
30function binarySearch(sortedNums2: number[], target: number): number {
31    let left = 0;
32    let right = sortedNums2.length;
33  
34    while (left < right) {
35        const mid = (left + right) >> 1; // Equivalent to Math.floor((left + right) / 2)
36        if (sortedNums2[mid] >= target) {
37            right = mid;
38        } else {
39            left = mid + 1;
40        }
41    }
42  
43    return left;
44}
45
46function maximumSumQueries(nums1: number[], nums2: number[], queries: number[][]): number[] {
47    const arrayLength = nums1.length;
48    const queryCount = queries.length;
49  
50    // Combine nums1 and nums2 into pairs
51    const numPairs: [number, number][] = [];
52    for (let i = 0; i < arrayLength; ++i) {
53        numPairs.push([nums1[i], nums2[i]]);
54    }
55  
56    // Sort pairs by first element in descending order
57    numPairs.sort((a, b) => b[0] - a[0]);
58  
59    // Create a sorted copy of nums2 for binary search
60    const sortedNums2 = [...nums2].sort((a, b) => a - b);
61  
62    // Create query indices array and sort by x value in descending order
63    const queryIndices: number[] = Array(queryCount)
64        .fill(0)
65        .map((_, i) => i);
66    queryIndices.sort((i, j) => queries[j][0] - queries[i][0]);
67  
68    // Initialize result array
69    const result: number[] = Array(queryCount).fill(0);
70  
71    // Initialize Binary Indexed Tree
72    initBIT(arrayLength);
73  
74    // Process queries in descending order of x values
75    let pairIndex = 0;
76    for (const queryIdx of queryIndices) {
77        const [minX, minY] = queries[queryIdx];
78      
79        // Add all pairs where first element >= minX to the BIT
80        while (pairIndex < arrayLength && numPairs[pairIndex][0] >= minX) {
81            // Find position in sorted nums2 array
82            const position = arrayLength - binarySearch(sortedNums2, numPairs[pairIndex][1]);
83            // Update BIT with sum of the pair
84            update(position, numPairs[pairIndex][0] + numPairs[pairIndex][1]);
85            pairIndex++;
86        }
87      
88        // Query the maximum sum where second element >= minY
89        const queryPosition = arrayLength - binarySearch(sortedNums2, minY);
90        result[queryIdx] = query(queryPosition);
91    }
92  
93    return result;
94}
95

Time and Space Complexity

Time Complexity: O(n log n + m log m + (n + m) log n)

Breaking down the operations:

  • Sorting nums by first element: O(n log n)
  • Sorting nums2: O(n log n)
  • Sorting query indices: O(m log m)
  • Processing each query:
    • For each of m queries, we potentially process some elements from nums (total across all queries is at most n)
    • For each element processed: binary search in nums2 takes O(log n) and BIT update takes O(log n)
    • For each query: binary search in nums2 takes O(log n) and BIT query takes O(log n)
  • Total for query processing: O((n + m) log n)

Overall: O(n log n + m log m + (n + m) log n) which simplifies to O((n + m) log n + m log m)

Space Complexity: O(n + m)

Breaking down the space usage:

  • BinaryIndexedTree array c: O(n)
  • Sorted nums array (zip of nums1 and nums2): O(n)
  • Answer array: O(m)
  • Sorting operations use O(n) and O(m) auxiliary space for the respective arrays

The dominant space usage is O(n + m)

Learn more about how to find time and space complexity quickly.

Common Pitfalls

1. Incorrect Index Mapping for Binary Indexed Tree

One of the most common pitfalls in this solution is misunderstanding the index transformation when using the Binary Indexed Tree. The BIT is 1-indexed, but the position calculation uses 0-indexed arrays.

The Pitfall:

# Incorrect: forgetting that BIT is 1-indexed
position = n - bisect_left(nums2, pairs[pair_index][1])
fenwick_tree.update(position, sum_value)  # This could pass 0 to BIT!

When bisect_left(nums2, pairs[pair_index][1]) returns n (meaning the value is greater than or equal to all elements), the position becomes 0, which is invalid for a 1-indexed BIT.

The Solution:

# Correct: ensure position is always >= 1
position = n - bisect_left(nums2, pairs[pair_index][1])
# Add 1 to make it 1-indexed, but this changes the logic
# OR handle edge cases explicitly:
if position == 0:
    position = 1  # Map to index 1 for the largest values
fenwick_tree.update(position, sum_value)

2. Confusion with Coordinate Compression Direction

The solution uses reverse indexing (n - bisect_left(...)) to transform the problem, which can be counterintuitive.

The Pitfall:

# Incorrect: using forward indexing
position = bisect_left(nums2, pairs[pair_index][1]) + 1
fenwick_tree.update(position, sum_value)
# This would store smaller nums2 values at smaller indices
# Making prefix queries return max for nums2 <= y, not nums2 >= y!

Why Reverse Indexing Works:

  • BIT naturally handles prefix maximum queries (indices 1 to k)
  • By reversing indices, larger nums2 values get smaller indices
  • A prefix query up to position k then captures all values where nums2 >= y

3. Not Handling Duplicate Values in nums2

When multiple elements in nums2 have the same value, bisect_left always returns the leftmost position, which could lead to incorrect index mapping.

The Pitfall:

nums2 = [1, 2, 2, 3]
# bisect_left(nums2, 2) always returns 1
# Multiple different pairs with nums2=2 map to the same BIT position

The Solution: The current implementation actually handles this correctly because:

  • All pairs with the same nums2 value map to the same BIT position
  • BIT's update operation keeps the maximum value at each position
  • This naturally handles duplicates by storing the best sum for each nums2 value

4. Processing Order Dependencies

The algorithm relies on processing both pairs and queries in specific orders. Mixing up these orders breaks the algorithm.

The Pitfall:

# Incorrect: processing queries in arbitrary order
for query_index in range(m):  # Wrong! Must be sorted by queries[i][0]
    query_x, query_y = queries[query_index]
    # ...

Why Order Matters:

  • Queries must be processed in descending order of x values
  • This ensures we can incrementally add pairs to the BIT
  • Each query sees all pairs with nums1 >= x that have been processed

5. Off-by-One Errors in Binary Search

Using the wrong binary search variant can cause subtle bugs.

The Pitfall:

# Using bisect_right instead of bisect_left
position = n - bisect_right(nums2, query_y)  # Wrong!

The Difference:

  • bisect_left(nums2, y): finds the leftmost position where y could be inserted
  • bisect_right(nums2, y): finds the rightmost position where y could be inserted
  • For finding values >= y, we need bisect_left to include equal values

Example to Illustrate:

nums2_sorted = [1, 2, 3, 4]
y = 2
# bisect_left(nums2_sorted, 2) = 1  → n - 1 includes values >= 2
# bisect_right(nums2_sorted, 2) = 2 → n - 2 only includes values > 2
Discover Your Strengths and Weaknesses: Take Our 5-Minute Quiz to Tailor Your Study Plan:

Which type of traversal does breadth first search do?


Recommended Readings

Want a Structured Path to Master System Design Too? Don’t Miss This!

Load More