2736. Maximum Sum Queries
Problem Description
You have two arrays nums1
and nums2
, both containing integers and having the same length n
. The arrays are 0-indexed.
You're also given a list of queries, where each query queries[i]
contains two values: [xi, yi]
.
For each query, you need to find the maximum possible sum nums1[j] + nums2[j]
where:
- The index
j
must satisfy:0 <= j < n
nums1[j]
must be greater than or equal toxi
nums2[j]
must be greater than or equal toyi
If no valid index j
exists that satisfies both conditions, the answer for that query is -1
.
Your task is to return an array where each element corresponds to the answer for each query in order.
Example:
If nums1 = [4, 3, 1, 2]
and nums2 = [2, 4, 9, 5]
, and you have a query [x=3, y=4]
:
- Index 0:
nums1[0]=4 >= 3
andnums2[0]=2 < 4
- doesn't satisfy both conditions - Index 1:
nums1[1]=3 >= 3
andnums2[1]=4 >= 4
- satisfies both conditions, sum = 3+4 = 7 - Index 2:
nums1[2]=1 < 3
- doesn't satisfy the first condition - Index 3:
nums1[3]=2 < 3
- doesn't satisfy the first condition
The maximum valid sum would be 7 from index 1.
Intuition
The naive approach would be to check every index for every query, but this would be inefficient with time complexity O(m * n)
where m
is the number of queries and n
is the array length.
The key insight is recognizing this as a two-dimensional constraint problem: for each query, we need indices where both nums1[j] >= x
AND nums2[j] >= y
. When dealing with two dimensions, we can often optimize by sorting one dimension and using a data structure to efficiently handle the other.
Let's think about how sorting helps. If we sort queries by their x
values in descending order, we can process them from largest to smallest x
. As we move to queries with smaller x
values, more indices from nums1
become valid (since the constraint nums1[j] >= x
becomes easier to satisfy). This means we can incrementally add valid indices as we process queries.
Similarly, if we sort the pairs (nums1[i], nums2[i])
by nums1
values in descending order, we can efficiently find all indices where nums1[j] >= x
by maintaining a pointer that moves forward as we process queries with decreasing x
values.
Now the challenge becomes: among all indices where nums1[j] >= x
, how do we quickly find the maximum nums1[j] + nums2[j]
where nums2[j] >= y
?
This is where the Binary Indexed Tree (Fenwick Tree) comes in. As we process queries and add valid indices based on the nums1
constraint, we can insert these values into a BIT organized by nums2
values. The BIT allows us to efficiently query for the maximum sum among all entries where nums2[j] >= y
.
The trick is to discretize the nums2
values (map them to ranks) so we can use them as indices in the BIT. By storing the maximum nums1[j] + nums2[j]
at each position, we can query for the maximum sum in the range where nums2[j] >= y
in O(log n)
time.
This approach reduces the overall complexity from O(m * n)
to O((n + m) * log n + m * log m)
, making it much more efficient for large inputs.
Learn more about Stack, Segment Tree, Binary Search, Sorting and Monotonic Stack patterns.
Solution Approach
The solution implements a Binary Indexed Tree (BIT) to efficiently handle the two-dimensional partial order problem. Let's walk through the implementation step by step:
1. Binary Indexed Tree Implementation:
The BinaryIndexedTree
class maintains an array c
where c[x]
stores the maximum value for a range. The tree supports:
update(x, v)
: Updates positionx
with valuev
ifv
is greater than the current maximumquery(x)
: Returns the maximum value in the range[1, x]
The BIT uses the property that x & -x
gives the rightmost set bit, allowing efficient range updates and queries in O(log n)
time.
2. Main Algorithm:
nums = sorted(zip(nums1, nums2), key=lambda x: -x[0])
First, we create pairs of (nums1[i], nums2[i])
and sort them in descending order by the first element. This allows us to process elements with larger nums1
values first.
nums2.sort()
We sort nums2
separately to enable binary search for discretization. This sorted array helps us map nums2
values to indices for the BIT.
for i in sorted(range(m), key=lambda i: -queries[i][0]):
We process queries in descending order of their x
values. This ensures that as we move to smaller x
values, we can incrementally add more valid elements.
3. Processing Each Query:
For each query (x, y)
:
while j < n and nums[j][0] >= x: k = n - bisect_left(nums2, nums[j][1]) tree.update(k, nums[j][0] + nums[j][1]) j += 1
- We add all pairs where
nums1 >= x
to the BIT bisect_left(nums2, nums[j][1])
finds the position ofnums[j][1]
in the sortednums2
- We use
k = n - bisect_left(...)
to reverse the index (storing larger values at smaller indices in BIT) - We update the BIT at position
k
with the sumnums[j][0] + nums[j][1]
k = n - bisect_left(nums2, y) ans[i] = tree.query(k)
- We find the discretized position for
y
- Query the BIT for the maximum sum where
nums2 >= y
- Store the result in the appropriate position of the answer array
4. Why This Works:
The algorithm maintains the invariant that when processing query i
, the BIT contains all pairs where nums1 >= queries[i][0]
. By organizing the BIT by nums2
values (in reverse order), querying position k
gives us the maximum sum among all pairs where both constraints are satisfied.
The reverse indexing (n - bisect_left(...)
) is crucial because BIT naturally handles prefix maximum queries. By reversing the indices, a prefix query on the BIT becomes a suffix query on the original nums2
values, which corresponds to finding values >= y
.
Time Complexity: O((n + m) × log n + m × log m)
- Sorting:
O(n log n + m log m)
- Processing queries:
O(m log n)
for binary searches - BIT operations:
O(n log n)
for updates andO(m log n)
for queries
Space Complexity: O(n + m)
for the BIT and result array
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a small example to illustrate the solution approach.
Given:
nums1 = [4, 3, 1, 2]
nums2 = [2, 4, 9, 5]
queries = [[3, 4], [1, 8], [5, 1]]
Step 1: Prepare the data
First, create pairs and sort them by nums1
descending:
- Original pairs:
[(4,2), (3,4), (1,9), (2,5)]
- Sorted pairs:
[(4,2), (3,4), (2,5), (1,9)]
Sort nums2
for discretization: [2, 4, 5, 9]
Sort query indices by x-value descending:
- Query 0:
[3, 4]
(x=3) - Query 1:
[1, 8]
(x=1) - Query 2:
[5, 1]
(x=5) - Processing order: Query 2 → Query 0 → Query 1
Step 2: Process Query 2 [x=5, y=1]
Initialize: j = 0
, BIT is empty
Check pairs where nums1 >= 5
:
- Pair
(4,2)
:4 < 5
❌ - stop here
No valid pairs added to BIT.
Query BIT for y=1
:
- Find position:
k = 4 - bisect_left([2,4,5,9], 1) = 4 - 0 = 4
- BIT.query(4) returns -1 (no valid pairs)
Result: ans[2] = -1
Step 3: Process Query 0 [x=3, y=4]
Current: j = 0
, BIT is empty
Add pairs where nums1 >= 3
:
- Pair
(4,2)
:4 >= 3
✓- Find position:
k = 4 - bisect_left([2,4,5,9], 2) = 4 - 0 = 4
- BIT.update(4, 4+2=6)
- Find position:
- Pair
(3,4)
:3 >= 3
✓- Find position:
k = 4 - bisect_left([2,4,5,9], 4) = 4 - 1 = 3
- BIT.update(3, 3+4=7)
- Find position:
- Pair
(2,5)
:2 < 3
❌ - stop here
Now j = 2
, BIT contains: {position 4: sum=6, position 3: sum=7}
Query BIT for y=4
:
- Find position:
k = 4 - bisect_left([2,4,5,9], 4) = 4 - 1 = 3
- BIT.query(3) returns max(values at positions 1-3) = 7
Result: ans[0] = 7
Step 4: Process Query 1 [x=1, y=8]
Current: j = 2
, BIT has pairs (4,2)
and (3,4)
Add pairs where nums1 >= 1
:
- Pair
(2,5)
:2 >= 1
✓- Find position:
k = 4 - bisect_left([2,4,5,9], 5) = 4 - 2 = 2
- BIT.update(2, 2+5=7)
- Find position:
- Pair
(1,9)
:1 >= 1
✓- Find position:
k = 4 - bisect_left([2,4,5,9], 9) = 4 - 3 = 1
- BIT.update(1, 1+9=10)
- Find position:
Now j = 4
, BIT contains all pairs
Query BIT for y=8
:
- Find position:
k = 4 - bisect_left([2,4,5,9], 8) = 4 - 3 = 1
- BIT.query(1) returns max(values at position 1) = 10
Result: ans[1] = 10
Final Answer: [7, 10, -1]
The key insight is that by processing queries in descending order of x-values, we incrementally add valid pairs to the BIT. The BIT, organized by discretized nums2 values in reverse order, allows us to efficiently find the maximum sum among pairs satisfying both constraints.
Solution Implementation
1from typing import List
2from bisect import bisect_left
3
4
5class BinaryIndexedTree:
6 """
7 Binary Indexed Tree (Fenwick Tree) for range maximum queries.
8 This implementation supports updating and querying maximum values.
9 """
10 __slots__ = ["size", "tree"]
11
12 def __init__(self, n: int) -> None:
13 """
14 Initialize the Binary Indexed Tree.
15
16 Args:
17 n: Size of the tree
18 """
19 self.size = n
20 self.tree = [-1] * (n + 1) # 1-indexed array, initialized with -1
21
22 def update(self, index: int, value: int) -> None:
23 """
24 Update the tree with a new value at the given index.
25 Only updates if the new value is greater than existing.
26
27 Args:
28 index: Position to update (1-indexed)
29 value: Value to update with
30 """
31 while index <= self.size:
32 self.tree[index] = max(self.tree[index], value)
33 # Move to next index affected by this update
34 index += index & -index
35
36 def query(self, index: int) -> int:
37 """
38 Query the maximum value from index 1 to the given index.
39
40 Args:
41 index: Upper bound of the query range (1-indexed)
42
43 Returns:
44 Maximum value in the range [1, index]
45 """
46 max_value = -1
47 while index > 0:
48 max_value = max(max_value, self.tree[index])
49 # Move to parent node
50 index -= index & -index
51 return max_value
52
53
54class Solution:
55 def maximumSumQueries(
56 self, nums1: List[int], nums2: List[int], queries: List[List[int]]
57 ) -> List[int]:
58 """
59 Find maximum sum of pairs (nums1[i], nums2[i]) for each query.
60 Each query [x, y] asks for max(nums1[i] + nums2[i]) where
61 nums1[i] >= x and nums2[i] >= y.
62
63 Args:
64 nums1: First array of integers
65 nums2: Second array of integers
66 queries: List of [x, y] queries
67
68 Returns:
69 List of maximum sums for each query, -1 if no valid pair exists
70 """
71 # Create pairs and sort by nums1 values in descending order
72 pairs = sorted(zip(nums1, nums2), key=lambda pair: -pair[0])
73
74 # Sort nums2 for binary search
75 nums2.sort()
76
77 n = len(nums1)
78 m = len(queries)
79 result = [-1] * m
80
81 # Initialize Binary Indexed Tree
82 fenwick_tree = BinaryIndexedTree(n)
83
84 # Process queries in descending order of x values
85 pair_index = 0
86 for query_index in sorted(range(m), key=lambda i: -queries[i][0]):
87 query_x, query_y = queries[query_index]
88
89 # Add all pairs with nums1[i] >= query_x to the tree
90 while pair_index < n and pairs[pair_index][0] >= query_x:
91 # Find position in sorted nums2 array
92 # Use n - position to convert to descending order for tree
93 position = n - bisect_left(nums2, pairs[pair_index][1])
94 sum_value = pairs[pair_index][0] + pairs[pair_index][1]
95 fenwick_tree.update(position, sum_value)
96 pair_index += 1
97
98 # Query for maximum sum where nums2[i] >= query_y
99 position = n - bisect_left(nums2, query_y)
100 result[query_index] = fenwick_tree.query(position)
101
102 return result
103
1class BinaryIndexedTree {
2 private int size;
3 private int[] tree;
4
5 /**
6 * Initialize a Binary Indexed Tree (Fenwick Tree) for range maximum queries
7 * @param size The size of the tree
8 */
9 public BinaryIndexedTree(int size) {
10 this.size = size;
11 tree = new int[size + 1];
12 Arrays.fill(tree, -1);
13 }
14
15 /**
16 * Update the tree by setting maximum value at index and propagating upwards
17 * @param index The 1-based index to update
18 * @param value The value to update with (will keep maximum)
19 */
20 public void update(int index, int value) {
21 while (index <= size) {
22 tree[index] = Math.max(tree[index], value);
23 // Move to next index by adding the lowest set bit
24 index += index & -index;
25 }
26 }
27
28 /**
29 * Query the maximum value in range [1, index]
30 * @param index The 1-based index to query up to
31 * @return The maximum value in the range
32 */
33 public int query(int index) {
34 int maxValue = -1;
35 while (index > 0) {
36 maxValue = Math.max(maxValue, tree[index]);
37 // Move to parent by removing the lowest set bit
38 index -= index & -index;
39 }
40 return maxValue;
41 }
42}
43
44class Solution {
45 /**
46 * Find maximum sum for each query where nums1[i] >= x and nums2[i] >= y
47 * @param nums1 First array of numbers
48 * @param nums2 Second array of numbers
49 * @param queries Array of queries, each containing [x, y]
50 * @return Array of maximum sums for each query, or -1 if no valid pair exists
51 */
52 public int[] maximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {
53 int n = nums1.length;
54
55 // Combine nums1 and nums2 into pairs for easier processing
56 int[][] numberPairs = new int[n][2];
57 for (int i = 0; i < n; ++i) {
58 numberPairs[i] = new int[] {nums1[i], nums2[i]};
59 }
60
61 // Sort pairs by first element in descending order
62 Arrays.sort(numberPairs, (a, b) -> b[0] - a[0]);
63
64 // Sort nums2 for binary search operations
65 Arrays.sort(nums2);
66
67 // Create index array to process queries in sorted order
68 int queryCount = queries.length;
69 Integer[] queryIndices = new Integer[queryCount];
70 for (int i = 0; i < queryCount; ++i) {
71 queryIndices[i] = i;
72 }
73
74 // Sort query indices by x value in descending order
75 Arrays.sort(queryIndices, (i, j) -> queries[j][0] - queries[i][0]);
76
77 int[] results = new int[queryCount];
78 int pairIndex = 0;
79 BinaryIndexedTree fenwickTree = new BinaryIndexedTree(n);
80
81 // Process queries in descending order of x values
82 for (int currentQueryIndex : queryIndices) {
83 int xThreshold = queries[currentQueryIndex][0];
84 int yThreshold = queries[currentQueryIndex][1];
85
86 // Add all pairs with first element >= xThreshold to the tree
87 while (pairIndex < n && numberPairs[pairIndex][0] >= xThreshold) {
88 // Find position of second element in sorted nums2 array
89 int position = n - Arrays.binarySearch(nums2, numberPairs[pairIndex][1]);
90 // Update tree with sum of the pair
91 fenwickTree.update(position, numberPairs[pairIndex][0] + numberPairs[pairIndex][1]);
92 pairIndex++;
93 }
94
95 // Find position for yThreshold in sorted nums2
96 int searchResult = Arrays.binarySearch(nums2, yThreshold);
97 // Convert binary search result to valid tree index
98 int treePosition = searchResult >= 0 ? n - searchResult : n + searchResult + 1;
99 // Query maximum sum for elements with second value >= yThreshold
100 results[currentQueryIndex] = fenwickTree.query(treePosition);
101 }
102
103 return results;
104 }
105}
106
1class BinaryIndexedTree {
2private:
3 int size;
4 vector<int> tree;
5
6public:
7 // Initialize BIT with given size
8 BinaryIndexedTree(int n) {
9 this->size = n;
10 tree.resize(n + 1, -1); // 1-indexed array, initialize with -1
11 }
12
13 // Update position x with maximum value v
14 void update(int position, int value) {
15 while (position <= size) {
16 tree[position] = max(tree[position], value);
17 position += position & -position; // Move to next position using lowbit
18 }
19 }
20
21 // Query maximum value in range [1, x]
22 int query(int position) {
23 int maxValue = -1;
24 while (position > 0) {
25 maxValue = max(maxValue, tree[position]);
26 position -= position & -position; // Move to parent using lowbit
27 }
28 return maxValue;
29 }
30};
31
32class Solution {
33public:
34 vector<int> maximumSumQueries(vector<int>& nums1, vector<int>& nums2, vector<vector<int>>& queries) {
35 // Create pairs of (negated nums1, nums2) for sorting
36 vector<pair<int, int>> numPairs;
37 int n = nums1.size();
38 int m = queries.size();
39
40 for (int i = 0; i < n; ++i) {
41 numPairs.emplace_back(-nums1[i], nums2[i]); // Negate for descending order
42 }
43
44 // Sort pairs by first element (negated nums1) in ascending order
45 // This gives us nums1 in descending order
46 sort(numPairs.begin(), numPairs.end());
47
48 // Sort nums2 for binary search later
49 sort(nums2.begin(), nums2.end());
50
51 // Create query indices array for sorting queries
52 vector<int> queryIndices(m);
53 iota(queryIndices.begin(), queryIndices.end(), 0); // Fill with 0, 1, 2, ..., m-1
54
55 // Sort query indices by x value in descending order
56 sort(queryIndices.begin(), queryIndices.end(),
57 [&](int i, int j) { return queries[j][0] < queries[i][0]; });
58
59 vector<int> result(m);
60 int pairIndex = 0;
61 BinaryIndexedTree fenwickTree(n);
62
63 // Process queries in descending order of x
64 for (int queryIdx : queryIndices) {
65 int xThreshold = queries[queryIdx][0];
66 int yThreshold = queries[queryIdx][1];
67
68 // Add all pairs where nums1[i] >= xThreshold to the BIT
69 while (pairIndex < n && -numPairs[pairIndex].first >= xThreshold) {
70 // Find rank of current y value in sorted nums2
71 int yRank = nums2.end() - lower_bound(nums2.begin(), nums2.end(),
72 numPairs[pairIndex].second);
73 // Update BIT with sum of current pair
74 fenwickTree.update(yRank, -numPairs[pairIndex].first + numPairs[pairIndex].second);
75 pairIndex++;
76 }
77
78 // Query maximum sum where y >= yThreshold
79 int yRank = nums2.end() - lower_bound(nums2.begin(), nums2.end(), yThreshold);
80 result[queryIdx] = fenwickTree.query(yRank);
81 }
82
83 return result;
84 }
85};
86
1// Binary Indexed Tree (Fenwick Tree) for range maximum queries
2let n: number;
3let c: number[];
4
5// Initialize the BIT with size n
6function initBIT(size: number): void {
7 n = size;
8 c = Array(size + 1).fill(-1);
9}
10
11// Update the BIT at position x with maximum value v
12function update(x: number, v: number): void {
13 while (x <= n) {
14 c[x] = Math.max(c[x], v);
15 x += x & -x; // Move to next index using lowbit operation
16 }
17}
18
19// Query the maximum value from index 1 to x
20function query(x: number): number {
21 let maxValue = -1;
22 while (x > 0) {
23 maxValue = Math.max(maxValue, c[x]);
24 x -= x & -x; // Move to parent index using lowbit operation
25 }
26 return maxValue;
27}
28
29// Binary search to find the first index where nums2[index] >= target
30function binarySearch(sortedNums2: number[], target: number): number {
31 let left = 0;
32 let right = sortedNums2.length;
33
34 while (left < right) {
35 const mid = (left + right) >> 1; // Equivalent to Math.floor((left + right) / 2)
36 if (sortedNums2[mid] >= target) {
37 right = mid;
38 } else {
39 left = mid + 1;
40 }
41 }
42
43 return left;
44}
45
46function maximumSumQueries(nums1: number[], nums2: number[], queries: number[][]): number[] {
47 const arrayLength = nums1.length;
48 const queryCount = queries.length;
49
50 // Combine nums1 and nums2 into pairs
51 const numPairs: [number, number][] = [];
52 for (let i = 0; i < arrayLength; ++i) {
53 numPairs.push([nums1[i], nums2[i]]);
54 }
55
56 // Sort pairs by first element in descending order
57 numPairs.sort((a, b) => b[0] - a[0]);
58
59 // Create a sorted copy of nums2 for binary search
60 const sortedNums2 = [...nums2].sort((a, b) => a - b);
61
62 // Create query indices array and sort by x value in descending order
63 const queryIndices: number[] = Array(queryCount)
64 .fill(0)
65 .map((_, i) => i);
66 queryIndices.sort((i, j) => queries[j][0] - queries[i][0]);
67
68 // Initialize result array
69 const result: number[] = Array(queryCount).fill(0);
70
71 // Initialize Binary Indexed Tree
72 initBIT(arrayLength);
73
74 // Process queries in descending order of x values
75 let pairIndex = 0;
76 for (const queryIdx of queryIndices) {
77 const [minX, minY] = queries[queryIdx];
78
79 // Add all pairs where first element >= minX to the BIT
80 while (pairIndex < arrayLength && numPairs[pairIndex][0] >= minX) {
81 // Find position in sorted nums2 array
82 const position = arrayLength - binarySearch(sortedNums2, numPairs[pairIndex][1]);
83 // Update BIT with sum of the pair
84 update(position, numPairs[pairIndex][0] + numPairs[pairIndex][1]);
85 pairIndex++;
86 }
87
88 // Query the maximum sum where second element >= minY
89 const queryPosition = arrayLength - binarySearch(sortedNums2, minY);
90 result[queryIdx] = query(queryPosition);
91 }
92
93 return result;
94}
95
Time and Space Complexity
Time Complexity: O(n log n + m log m + (n + m) log n)
Breaking down the operations:
- Sorting
nums
by first element:O(n log n)
- Sorting
nums2
:O(n log n)
- Sorting query indices:
O(m log m)
- Processing each query:
- For each of
m
queries, we potentially process some elements fromnums
(total across all queries is at mostn
) - For each element processed: binary search in
nums2
takesO(log n)
and BIT update takesO(log n)
- For each query: binary search in
nums2
takesO(log n)
and BIT query takesO(log n)
- For each of
- Total for query processing:
O((n + m) log n)
Overall: O(n log n + m log m + (n + m) log n)
which simplifies to O((n + m) log n + m log m)
Space Complexity: O(n + m)
Breaking down the space usage:
- BinaryIndexedTree array
c
:O(n)
- Sorted
nums
array (zip of nums1 and nums2):O(n)
- Answer array:
O(m)
- Sorting operations use
O(n)
andO(m)
auxiliary space for the respective arrays
The dominant space usage is O(n + m)
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrect Index Mapping for Binary Indexed Tree
One of the most common pitfalls in this solution is misunderstanding the index transformation when using the Binary Indexed Tree. The BIT is 1-indexed, but the position calculation uses 0-indexed arrays.
The Pitfall:
# Incorrect: forgetting that BIT is 1-indexed position = n - bisect_left(nums2, pairs[pair_index][1]) fenwick_tree.update(position, sum_value) # This could pass 0 to BIT!
When bisect_left(nums2, pairs[pair_index][1])
returns n
(meaning the value is greater than or equal to all elements), the position becomes 0
, which is invalid for a 1-indexed BIT.
The Solution:
# Correct: ensure position is always >= 1 position = n - bisect_left(nums2, pairs[pair_index][1]) # Add 1 to make it 1-indexed, but this changes the logic # OR handle edge cases explicitly: if position == 0: position = 1 # Map to index 1 for the largest values fenwick_tree.update(position, sum_value)
2. Confusion with Coordinate Compression Direction
The solution uses reverse indexing (n - bisect_left(...)
) to transform the problem, which can be counterintuitive.
The Pitfall:
# Incorrect: using forward indexing position = bisect_left(nums2, pairs[pair_index][1]) + 1 fenwick_tree.update(position, sum_value) # This would store smaller nums2 values at smaller indices # Making prefix queries return max for nums2 <= y, not nums2 >= y!
Why Reverse Indexing Works:
- BIT naturally handles prefix maximum queries (indices 1 to k)
- By reversing indices, larger
nums2
values get smaller indices - A prefix query up to position
k
then captures all values wherenums2 >= y
3. Not Handling Duplicate Values in nums2
When multiple elements in nums2
have the same value, bisect_left
always returns the leftmost position, which could lead to incorrect index mapping.
The Pitfall:
nums2 = [1, 2, 2, 3] # bisect_left(nums2, 2) always returns 1 # Multiple different pairs with nums2=2 map to the same BIT position
The Solution: The current implementation actually handles this correctly because:
- All pairs with the same
nums2
value map to the same BIT position - BIT's
update
operation keeps the maximum value at each position - This naturally handles duplicates by storing the best sum for each
nums2
value
4. Processing Order Dependencies
The algorithm relies on processing both pairs and queries in specific orders. Mixing up these orders breaks the algorithm.
The Pitfall:
# Incorrect: processing queries in arbitrary order
for query_index in range(m): # Wrong! Must be sorted by queries[i][0]
query_x, query_y = queries[query_index]
# ...
Why Order Matters:
- Queries must be processed in descending order of
x
values - This ensures we can incrementally add pairs to the BIT
- Each query sees all pairs with
nums1 >= x
that have been processed
5. Off-by-One Errors in Binary Search
Using the wrong binary search variant can cause subtle bugs.
The Pitfall:
# Using bisect_right instead of bisect_left position = n - bisect_right(nums2, query_y) # Wrong!
The Difference:
bisect_left(nums2, y)
: finds the leftmost position wherey
could be insertedbisect_right(nums2, y)
: finds the rightmost position wherey
could be inserted- For finding values
>= y
, we needbisect_left
to include equal values
Example to Illustrate:
nums2_sorted = [1, 2, 3, 4] y = 2 # bisect_left(nums2_sorted, 2) = 1 → n - 1 includes values >= 2 # bisect_right(nums2_sorted, 2) = 2 → n - 2 only includes values > 2
Which type of traversal does breadth first search do?
Recommended Readings
Stack Intro Imagine you have a pile of books on your desk If you want to add a new book you place it on top If you want to read a book you take it from the top And if you simply want to see which book is on the top you
Segment Tree Faster Range Queries For this article we want to introduce the idea of a Segment Tree Segment Trees allow us to quickly perform range queries as well as range updates Suppose we have an array and we want to know the sum of a particular range of numbers as well
Binary Search Speedrun For each of the Speedrun questions you will be given a binary search related problem and a corresponding multiple choice question The multiple choice questions are related to the techniques and template s introduced in the binary search section It's recommended that you have gone through at
Want a Structured Path to Master System Design Too? Don’t Miss This!