747. Largest Number At Least Twice of Others
Problem Description
In this problem, you are given an array of integers, nums
, with the assurance that the largest integer is unique, which means it does not appear more than once in the array. The task is to check whether this largest number is at least twice as large as every other number present in the array. If such a condition is met, your function should return the index of this largest number. However, if there's no number in the array that is twice as large as every other number, or the largest number itself is not twice as big as at least one other number in the array, then the function should return -1
.
Intuition
The intuition for solving this problem stems from the requirement that we must find the largest number and then compare it to all others. We can do this efficiently by tracking two numbers as we iterate through the array: the largest number so far, and the second-largest number so far. We don't actually need to check the largest number against all other numbers if we maintain the second-largest; it's enough to check if it's at least twice the second-largest.
The solution works as follows:
- Initialize two variables,
mx
andmid
, to track the largest and second-largest values, respectively, and another variable,ans
, to store the index of the largest number. Start all of them at0
, withans
initialized to-1
. - Iterate through the array with their index and value (
i, v
). - For each number
v
, check if it is greater than the current largest numbermx
. If it is, updatemid
tomx
(since the largest will now become the second-largest), updatemx
tov
, and store the current indexi
inans
. - If
v
is not greater thanmx
but is greater than the second-largest numbermid
, then updatemid
tov
. - After iterating through the entire array, we need to check if our found largest number
mx
is at least twice as big as the second-largestmid
. If it is, we return the stored indexans
; otherwise, we return-1
.
This approach ensures that we only need a single pass through the array, achieving the goal using O(n) time complexity without any extra space complexity.
Learn more about Sorting patterns.
Solution Approach
The solution approach employs a linear scan algorithm, which is a simple yet powerful technique used in problems that require comparison or finding elements with certain properties in an array or list. Specifically, the algorithm keeps track of the maximum (mx
) and the second maximum (mid
) values while scanning through the array once.
Let's take a more detailed look at the data structures and patterns used in the implementation:
- Variables for Tracking: We use two variables
mx
andmid
to keep track of the largest and the second-largest values as we iterate over the array. An additional variableans
is used to note the index of the largest number. - Iteration: We use a
for
loop to iterate through the array elements enumerated with their indices using the built-inenumerate
function in Python. Theenumerate
function provides a tuple for each element in the list, containing the index (i
) and the value (v
). - Conditional Logic: Inside the loop, we use conditional statements (
if
/elif
) to compare the current elementv
with our tracked maximum (mx
) and second maximum (mid
). This helps us in updating these variables without having to comparemx
with every other number in the array. - Updating Values: If we find a new maximum value, we update
mid
to the oldmx
before updatingmx
to the new maximum. If the current value is not larger thanmx
but is larger thanmid
, we simply updatemid
. - Final Check and Return: After completing the iteration, the final check outside the loop determines whether
mx
is at least twice as large asmid
. If the condition is satisfied, the index stored inans
is returned, and if not,-1
is returned as specified by the problem statement.
Here is how the implementation translates the solution approach:
- Initialization: We set
mx = mid = 0
andans = -1
. These are our starting conditions. - Iteration over
nums
: Usingenumerate(nums)
, we loop over eachi, v
pair in the array. - New Maximum Condition: If
v > mx
, we first setmid = mx
, thenmx = v
, followed byans = i
.mid = mx
ensures we remember the previous largest value.mx = v
sets the new largest value.ans = i
captures the index of the new largest value.
- New Second Maximum Condition: If
v
is not the new maximum but is greater than the currentmid
, we setmid = v
. It's important because we only care about the second-largest value for the comparison with the largest value. - Return Condition: Perform the final comparison using
return ans if mx >= 2 * mid else -1
. Ifmx
is twice as large or larger thanmid
, we returnans
sincemx
meets the criteria; otherwise, we return-1
.
The simplicity of this algorithm lies in avoiding unnecessary operations and comparisons, making efficient use of a single-pass scan to acquire our solution.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a small example to illustrate the solution approach. Suppose we have the following array of integers:
nums = [3, 6, 1, 0]
We want to find out if the largest number in nums
is twice as large as all the other numbers, and if so, return its index.
Following the linear scan algorithm described in the solution approach:
-
Initialization: We start with
mx = mid = 0
andans = -1
. This means currently, our largest and second-largest numbers are both set to the first element of the array, and we have no valid answer yet. -
Iteration over
nums
:- First iteration (i=0, v=3): Since this is the first element,
mx
andmid
are already set to 3, andans
is set to 0. - Second iteration (i=1, v=6): Now
v
is greater thanmx
, we updatemid
to the currentmx
(3), updatemx
to 6, and setans
to 1. - Third iteration (i=2, v=1): Here,
v
is neither greater thanmx
(6) nor greater thanmid
(3), so no changes are made. - Fourth iteration (i=3, v=0): Similarly,
v
is not greater thanmx
(6) ormid
(3), so no changes are made here as well.
- First iteration (i=0, v=3): Since this is the first element,
-
New Maximum and Second Maximum Conditions: Have been applied during the iteration. After the loop, our current maximum
mx
is 6, our second maximummid
is 3, andans
indicating the largest number's index is 1. -
Return Condition: We finally check if
mx
(6) is at least twice as large asmid
(3). Since it is not (6 is not ≥ 2*3), we return-1
.
We conclude the iteration, and since the largest number (6) is not at least twice as large as the second-largest number in the array, the function would return -1
. Our implementation correctly follows the solution approach and therefore, validates its effectiveness.
Solution Implementation
1from typing import List
2
3class Solution:
4 def dominantIndex(self, nums: List[int]) -> int:
5 # Initialize maximum and second maximum values and the index of the maximum value
6 max_value = second_max = -1
7 max_index = -1
8
9 # Iterate through the numbers with their indices
10 for index, value in enumerate(nums):
11 # If the current value is greater than the maximum value found so far
12 if value > max_value:
13 # Assign the old max_value to second_max before updating max_value
14 second_max, max_value = max_value, value
15 # Record the index of the new maximum value
16 max_index = index
17 # Else if the value is not greater than max_value but is greater than second_max
18 elif value > second_max:
19 # Update the second maximum value
20 second_max = value
21
22 # Check if the maximum value is at least twice as much as the second maximum
23 # If so, return the index of the maximum value. Otherwise, return -1.
24 return max_index if max_value >= 2 * second_max else -1
25
1class Solution {
2 public int dominantIndex(int[] nums) {
3 // Initialize two variables to store the largest and second largest numbers
4 int max = Integer.MIN_VALUE;
5 int secondMax = Integer.MIN_VALUE;
6
7 // The index of the largest number will be stored in this variable
8 int indexOfMax = -1;
9
10 // Iterate through the array to find the largest and second largest numbers
11 for (int i = 0; i < nums.length; i++) {
12 if (nums[i] > max) {
13 // If the current number is greater than the largest found so far,
14 // update secondMax to max, and max to the current number
15 secondMax = max;
16 max = nums[i];
17
18 // Update the index of the largest number
19 indexOfMax = i;
20 } else if (nums[i] > secondMax) {
21 // If the current number is only greater than secondMax,
22 // update the secondMax to the current number
23 secondMax = nums[i];
24 }
25 }
26
27 // Check if the largest number is at least twice as much as the second largest number
28 // If so, return the index of the largest number, otherwise return -1
29 return max >= secondMax * 2 ? indexOfMax : -1;
30 }
31}
32
1#include <vector> // Required for using the vector container.
2
3class Solution {
4public:
5 // Function to find whether there exists a dominant index.
6 // The dominant index is an index where the element is at least twice as
7 // large as every other element in the array. If such an element exists, return its index.
8 // Otherwise, return -1.
9 int dominantIndex(vector<int>& nums) {
10 int maxElement = 0; // Holds the value of the largest element.
11 int secondMaxElement = 0; // Holds the value of the second largest element.
12 int dominantIndex = 0; // Initialize the dominant index to 0.
13
14 // Iterate over the array to find the largest and second largest elements.
15 for (int i = 0; i < nums.size(); ++i) {
16 // If current element is greater than the largest element found so far
17 if (nums[i] > maxElement) {
18 secondMaxElement = maxElement; // Update the second max to be the previous max
19 maxElement = nums[i]; // Update the max to be the current element
20 dominantIndex = i; // Update the index of the largest element
21 }
22 // If current element is not greater than max but is greater than the second max
23 else if (nums[i] > secondMaxElement) {
24 secondMaxElement = nums[i]; // Update the second max to be the current element
25 }
26 }
27
28 // If the largest element is at least twice as big as the second largest element,
29 // return the index of the largest element, otherwise return -1.
30 return maxElement >= secondMaxElement * 2 ? dominantIndex : -1;
31 }
32};
33
1/**
2 * This TypeScript function finds the index of the dominant element in the array.
3 * An element is dominant if it is greater than twice all other elements.
4 * @param {number[]} nums - An array of numbers.
5 * @returns {number} - The index of the dominant element or -1 if no such element exists.
6 */
7const dominantIndex = (nums: number[]): number => {
8 let largest: number = 0;
9 let secondLargest: number = 0;
10 let dominantIndex: number = 0;
11
12 // Loop through all elements in the nums array
13 for (let i = 0; i < nums.length; ++i) {
14 if (nums[i] > largest) { // If current element is larger than the largest element found so far
15 secondLargest = largest; // Update the second largest element
16 largest = nums[i]; // Update the largest element
17 dominantIndex = i; // Update the index of the dominant element
18 } else if (nums[i] > secondLargest) { // If current element is larger than the second largest element
19 secondLargest = nums[i]; // Update the second largest element
20 }
21 }
22
23 // If the largest element is at least twice as large as the second largest element, return its index.
24 // Otherwise, return -1 indicating there is no dominant element.
25 return largest >= secondLargest * 2 ? dominantIndex : -1;
26};
27
28// Example usage of the function
29const testArray: number[] = [3, 6, 1, 0];
30const index: number = dominantIndex(testArray);
31console.log('The dominant index is:', index); // Outputs the index or -1 if no dominant element is found
32
Time and Space Complexity
Time Complexity
The time complexity of the code is O(n)
, where n
is the number of elements in the input list nums
. This is because the code consists of a single for loop that iterates through all the elements of the list exactly once to find the largest and the second largest elements.
During each iteration, the code performs a constant-time operation to compare the current value v
to the current maximum mx
and the second maximum mid
. Assignments and comparisons are basic operations that take constant time. Thus, the for loop constitutes the major time-consuming part of the algorithm.
Space Complexity
The space complexity of the code is O(1)
, which means it uses constant additional space. The only extra variables used in the function are mx
, mid
, and ans
, and these do not depend on the size of the input list. All other operations are done in-place and do not require allocation of additional storage that scales with the input size.
Learn more about how to find time and space complexity quickly using problem constraints.
In a binary min heap, the minimum element can be found in:
Recommended Readings
Sorting Summary Comparisons We presented quite a few sorting algorithms and it is essential to know the advantages and disadvantages of each one The basic algorithms are easy to visualize and easy to learn for beginner programmers because of their simplicity As such they will suffice if you don't know any advanced
LeetCode Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way we
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https algomonster s3 us east 2 amazonaws com recursion jpg You first
Want a Structured Path to Master System Design Too? Don’t Miss This!