2885. Rename Columns
Problem Description
This problem asks you to rename the columns of a DataFrame called students
. The DataFrame contains information about students with four columns: id
, first
, last
, and age
.
Your task is to rename these columns to more descriptive names:
id
should becomestudent_id
first
should becomefirst_name
last
should becomelast_name
age
should becomeage_in_years
The solution uses pandas' rename()
method with a dictionary mapping the old column names to the new ones. The inplace=True
parameter modifies the original DataFrame directly rather than creating a copy. After renaming, the function returns the modified DataFrame with the updated column names while keeping all the data intact.
For example, if the input DataFrame has a row with values [1, "Mason", "King", 6]
under columns [id, first, last, age]
, the output will have the same row values but under the renamed columns [student_id, first_name, last_name, age_in_years]
.
Intuition
When we need to change column names in a DataFrame, we're essentially performing a mapping operation - taking each old name and replacing it with a new name. The most straightforward way to express this mapping is through a dictionary, where keys represent the current names and values represent the desired new names.
The pandas library provides the rename()
method specifically for this purpose. Since we have a clear one-to-one mapping between old and new column names, we can create a dictionary that captures these relationships:
'id' → 'student_id'
'first' → 'first_name'
'last' → 'last_name'
'age' → 'age_in_years'
The key insight is that column renaming is a metadata operation - we're only changing the labels, not the actual data. This makes it a very efficient operation. By using inplace=True
, we avoid creating an unnecessary copy of the entire DataFrame, which saves memory especially when dealing with large datasets.
This approach is intuitive because it mirrors how we think about renaming: "I want to change this name to that name." The dictionary structure naturally represents this thought process, making the code readable and maintainable.
Solution Approach
The implementation uses pandas' built-in rename()
method to change the column names. Here's how the solution works step by step:
-
Define the mapping dictionary: Create a dictionary that maps each old column name to its new name:
columns={ 'id': 'student_id', 'first': 'first_name', 'last': 'last_name', 'age': 'age_in_years', }
-
Apply the rename operation: Call the
rename()
method on the DataFrame with the mapping dictionary:students.rename(columns={...}, inplace=True)
-
In-place modification: The
inplace=True
parameter tells pandas to modify the original DataFrame directly instead of creating a new one. This is more memory-efficient as it avoids duplicating the data. -
Return the modified DataFrame: After the renaming operation completes, return the same DataFrame object (now with updated column names):
return students
The entire operation happens in constant time relative to the number of rows since we're only updating the column metadata, not iterating through the data. The space complexity is O(1) when using inplace=True
, as we're not creating a copy of the DataFrame.
This pattern of using a dictionary for mapping transformations is common in pandas operations and provides a clean, declarative way to specify the desired changes.
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a concrete example to illustrate how the column renaming works.
Initial DataFrame:
Suppose we have a students
DataFrame with the following data:
id | first | last | age |
---|---|---|---|
1 | Alice | Smith | 20 |
2 | Bob | Jones | 19 |
3 | Carol | Brown | 21 |
Step 1: Create the mapping dictionary We define how each column should be renamed:
columns = { 'id': 'student_id', 'first': 'first_name', 'last': 'last_name', 'age': 'age_in_years' }
Step 2: Apply the rename operation
When we call students.rename(columns=columns, inplace=True)
, pandas looks at each current column name and checks if it exists as a key in our dictionary:
- Finds 'id' → replaces with 'student_id'
- Finds 'first' → replaces with 'first_name'
- Finds 'last' → replaces with 'last_name'
- Finds 'age' → replaces with 'age_in_years'
Step 3: Result The DataFrame now has updated column names while preserving all the original data:
student_id | first_name | last_name | age_in_years |
---|---|---|---|
1 | Alice | Smith | 20 |
2 | Bob | Jones | 19 |
3 | Carol | Brown | 21 |
Notice that only the column headers changed - the actual data values remain exactly the same. The operation is like relabeling the columns without touching the contents, similar to changing the labels on filing cabinet drawers without moving the files inside.
Solution Implementation
1import pandas as pd
2
3
4def renameColumns(students: pd.DataFrame) -> pd.DataFrame:
5 """
6 Rename columns in the students DataFrame to more descriptive names.
7
8 Args:
9 students: DataFrame containing student information with columns
10 'id', 'first', 'last', and 'age'
11
12 Returns:
13 DataFrame with renamed columns:
14 - 'id' -> 'student_id'
15 - 'first' -> 'first_name'
16 - 'last' -> 'last_name'
17 - 'age' -> 'age_in_years'
18 """
19 # Define column mapping from old names to new names
20 column_mapping = {
21 'id': 'student_id',
22 'first': 'first_name',
23 'last': 'last_name',
24 'age': 'age_in_years',
25 }
26
27 # Rename columns in-place to avoid creating a copy
28 students.rename(columns=column_mapping, inplace=True)
29
30 # Return the modified DataFrame
31 return students
32
1import java.util.HashMap;
2import java.util.Map;
3
4public class DataFrameProcessor {
5
6 /**
7 * Rename columns in the students DataFrame to more descriptive names.
8 *
9 * @param students DataFrame containing student information with columns
10 * 'id', 'first', 'last', and 'age'
11 * @return DataFrame with renamed columns:
12 * - 'id' -> 'student_id'
13 * - 'first' -> 'first_name'
14 * - 'last' -> 'last_name'
15 * - 'age' -> 'age_in_years'
16 */
17 public DataFrame renameColumns(DataFrame students) {
18 // Define column mapping from old names to new names
19 Map<String, String> columnMapping = new HashMap<>();
20 columnMapping.put("id", "student_id");
21 columnMapping.put("first", "first_name");
22 columnMapping.put("last", "last_name");
23 columnMapping.put("age", "age_in_years");
24
25 // Rename columns in-place to avoid creating a copy
26 // Note: In Java, DataFrame operations depend on the library used
27 // This assumes a DataFrame class with a renameColumns method
28 students.renameColumns(columnMapping);
29
30 // Return the modified DataFrame
31 return students;
32 }
33}
34
1#include <vector>
2#include <string>
3#include <unordered_map>
4
5// Structure to represent a student record
6struct Student {
7 int id;
8 std::string first;
9 std::string last;
10 int age;
11};
12
13// Structure to represent a student with renamed fields
14struct RenamedStudent {
15 int student_id;
16 std::string first_name;
17 std::string last_name;
18 int age_in_years;
19};
20
21// Class to represent a DataFrame-like structure
22class DataFrame {
23public:
24 std::vector<Student> students;
25 std::unordered_map<std::string, std::string> column_names;
26
27 // Constructor
28 DataFrame() {
29 // Initialize default column names
30 column_names["id"] = "id";
31 column_names["first"] = "first";
32 column_names["last"] = "last";
33 column_names["age"] = "age";
34 }
35
36 // Method to rename columns
37 void renameColumns(const std::unordered_map<std::string, std::string>& mapping) {
38 // Update column names based on the provided mapping
39 for (const auto& pair : mapping) {
40 if (column_names.find(pair.first) != column_names.end()) {
41 column_names[pair.first] = pair.second;
42 }
43 }
44 }
45};
46
47/**
48 * Rename columns in the students DataFrame to more descriptive names.
49 *
50 * @param students Reference to DataFrame containing student information with columns
51 * 'id', 'first', 'last', and 'age'
52 *
53 * @return Reference to DataFrame with renamed columns:
54 * - 'id' -> 'student_id'
55 * - 'first' -> 'first_name'
56 * - 'last' -> 'last_name'
57 * - 'age' -> 'age_in_years'
58 */
59DataFrame& renameColumns(DataFrame& students) {
60 // Define column mapping from old names to new names
61 std::unordered_map<std::string, std::string> column_mapping = {
62 {"id", "student_id"},
63 {"first", "first_name"},
64 {"last", "last_name"},
65 {"age", "age_in_years"}
66 };
67
68 // Rename columns in-place to avoid creating a copy
69 students.renameColumns(column_mapping);
70
71 // Return the modified DataFrame
72 return students;
73}
74
1// Import statement (TypeScript doesn't have pandas, so we'll define types)
2interface DataFrame {
3 columns: string[];
4 data: any[][];
5 rename: (mapping: { columns: Record<string, string>, inplace: boolean }) => DataFrame;
6}
7
8interface StudentDataFrame extends DataFrame {
9 // Specific columns for student data
10 id?: any[];
11 first?: any[];
12 last?: any[];
13 age?: any[];
14}
15
16/**
17 * Rename columns in the students DataFrame to more descriptive names.
18 *
19 * @param students - DataFrame containing student information with columns
20 * 'id', 'first', 'last', and 'age'
21 * @returns DataFrame with renamed columns:
22 * - 'id' -> 'student_id'
23 * - 'first' -> 'first_name'
24 * - 'last' -> 'last_name'
25 * - 'age' -> 'age_in_years'
26 */
27function renameColumns(students: StudentDataFrame): StudentDataFrame {
28 // Define column mapping from old names to new names
29 const columnMapping: Record<string, string> = {
30 'id': 'student_id',
31 'first': 'first_name',
32 'last': 'last_name',
33 'age': 'age_in_years',
34 };
35
36 // Rename columns in-place to avoid creating a copy
37 students.rename({
38 columns: columnMapping,
39 inplace: true
40 });
41
42 // Return the modified DataFrame
43 return students;
44}
45
Time and Space Complexity
Time Complexity: O(1)
The rename()
operation in pandas with inplace=True
modifies the column labels directly by updating the internal column index mapping. This is a constant-time operation as it only involves updating references/pointers to the column names in the DataFrame's metadata, regardless of the number of rows in the DataFrame. The operation doesn't iterate through the data values themselves.
Space Complexity: O(1)
With inplace=True
, the renaming operation modifies the existing DataFrame object without creating a copy of the data. Only the column index mapping is updated in-place, which requires a constant amount of additional memory for the new column name strings. The space used doesn't scale with the size of the input DataFrame (number of rows or columns beyond those being renamed).
Common Pitfalls
1. Forgetting to Return the DataFrame When Using inplace=True
A common mistake is assuming that rename()
with inplace=True
returns the modified DataFrame. In reality, when inplace=True
is used, the method returns None
and modifies the original DataFrame directly.
Incorrect approach:
def renameColumns(students: pd.DataFrame) -> pd.DataFrame:
# This returns None!
return students.rename(columns={
'id': 'student_id',
'first': 'first_name',
'last': 'last_name',
'age': 'age_in_years',
}, inplace=True)
Correct approach:
def renameColumns(students: pd.DataFrame) -> pd.DataFrame:
students.rename(columns={
'id': 'student_id',
'first': 'first_name',
'last': 'last_name',
'age': 'age_in_years',
}, inplace=True)
return students # Return the modified DataFrame
2. Not Handling Missing or Extra Columns
If the input DataFrame doesn't have all expected columns or has additional columns, the code will still work but may not behave as expected. The rename()
method only renames columns that exist and match the keys in the mapping dictionary.
More robust approach:
def renameColumns(students: pd.DataFrame) -> pd.DataFrame:
# Check if expected columns exist
expected_columns = {'id', 'first', 'last', 'age'}
if not expected_columns.issubset(students.columns):
missing = expected_columns - set(students.columns)
raise ValueError(f"Missing expected columns: {missing}")
column_mapping = {
'id': 'student_id',
'first': 'first_name',
'last': 'last_name',
'age': 'age_in_years',
}
students.rename(columns=column_mapping, inplace=True)
return students
3. Confusion Between inplace=True
and Creating a Copy
Some developers prefer to avoid inplace=True
to maintain functional programming principles and avoid side effects. If you want to preserve the original DataFrame, don't use inplace=True
:
Alternative approach without modifying the original:
def renameColumns(students: pd.DataFrame) -> pd.DataFrame:
# Creates and returns a new DataFrame with renamed columns
return students.rename(columns={
'id': 'student_id',
'first': 'first_name',
'last': 'last_name',
'age': 'age_in_years',
})
4. Case Sensitivity Issues
Column names in pandas are case-sensitive. If the actual column names have different casing than expected, the rename operation will silently do nothing for those columns.
Solution with case-insensitive handling:
def renameColumns(students: pd.DataFrame) -> pd.DataFrame:
# Create a case-insensitive mapping
current_columns = {col.lower(): col for col in students.columns}
column_mapping = {}
mappings = {
'id': 'student_id',
'first': 'first_name',
'last': 'last_name',
'age': 'age_in_years',
}
for old_name, new_name in mappings.items():
if old_name.lower() in current_columns:
column_mapping[current_columns[old_name.lower()]] = new_name
students.rename(columns=column_mapping, inplace=True)
return students
Depth first search is equivalent to which of the tree traversal order?
Recommended Readings
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https assets algo monster recursion jpg You first call Ben and ask
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!