1681. Minimum Incompatibility
Problem Description
You have an integer array nums
and an integer k
. Your task is to divide this array into k
subsets where:
- Each subset must have equal size (same number of elements)
- No subset can contain duplicate elements (all elements in a subset must be distinct)
The incompatibility of a subset is defined as the difference between its maximum and minimum elements. For example, if a subset contains [2, 5, 7]
, its incompatibility is 7 - 2 = 5
.
Your goal is to find the minimum possible sum of incompatibilities across all k
subsets after optimally distributing the array elements. If it's impossible to create such a partition (for instance, if there are too many duplicate elements to form distinct subsets), return -1
.
Key points to understand:
- The array must be completely partitioned (all elements must be assigned to exactly one subset)
- Each subset must have exactly
n/k
elements wheren
is the length ofnums
- Elements can appear in any order within a subset
- You want to minimize the total sum of (max - min) values across all subsets
For example, if nums = [1, 2, 1, 4]
and k = 2
, you need to create 2 subsets of size 2 each. One valid partition could be [1, 2]
and [1, 4]
, giving incompatibilities of 1
and 3
respectively, for a total sum of 4
.
Intuition
The key insight is that we need to explore different ways to partition the array into valid subsets and find the optimal one. Since each subset must have exactly m = n/k
elements and no duplicates, we can think of this as a combinatorial optimization problem.
First, let's consider what makes a valid subset. A subset of size m
is valid if it contains no duplicate elements. For any valid subset, we can immediately calculate its incompatibility by finding the difference between its maximum and minimum elements. This suggests we should precompute the incompatibility for all possible valid subsets.
Since the array size is small (constraints typically allow up to 16 elements), we can use bit manipulation to represent subsets. Each subset can be encoded as a binary number where the j-th
bit indicates whether nums[j]
is included. For example, if nums = [1, 2, 3]
, the binary 101
represents the subset containing nums[0]
and nums[2]
, which is [1, 3]
.
With this representation, we can precompute array g
where g[i]
stores the incompatibility of subset i
if it's a valid subset of size m
, or -1
if it's invalid (has duplicates or wrong size).
Now for the main problem: how do we find the optimal way to partition the entire array? This is where dynamic programming comes in. We define f[i]
as the minimum sum of incompatibilities when we've assigned elements according to bitmask i
. Starting from f[0] = 0
(no elements assigned), we build up to f[2^n - 1]
(all elements assigned).
The transition works as follows: for each state i
, we look at the remaining unassigned elements. Among these, we find elements that are distinct (no duplicates) and try to form the next subset. We enumerate all possible valid subsets from these remaining elements and update our DP state accordingly. If we can form a valid subset j
from the remaining elements, then f[i | j] = min(f[i | j], f[i] + g[j])
.
The reason this works is that we're essentially trying all possible ways to partition the array while maintaining the constraints, and the DP ensures we don't recompute the same subproblems. The bit manipulation allows us to efficiently track which elements have been assigned and which are still available.
Learn more about Dynamic Programming and Bitmask patterns.
Solution Approach
The solution uses preprocessing combined with state compression and dynamic programming. Let's walk through the implementation step by step.
Step 1: Preprocessing Valid Subsets
First, we calculate m = n/k
, which is the required size of each subset. We create an array g
of size 2^n
to store incompatibilities, initialized with -1
.
For each possible subset i
from 1
to 2^n - 1
:
- Check if the subset has exactly
m
elements usingbit_count()
- If yes, iterate through all elements in
nums
and check if bitj
is set ini
- Track the elements in a set to detect duplicates
- Keep track of minimum and maximum values
- If we successfully add
m
distinct elements, calculateg[i] = max - min
- If duplicates are found,
g[i]
remains-1
for i in range(1, 1 << n):
if i.bit_count() != m:
continue
# Check for duplicates and calculate min/max
if len(s) == m: # Valid subset with no duplicates
g[i] = mx - mi
Step 2: Dynamic Programming
Initialize DP array f
where f[i]
represents the minimum sum of incompatibilities for state i
. Set f[0] = 0
and all others to infinity.
For each state i
where f[i]
is not infinity:
- Find all unassigned elements that are distinct (no duplicates among remaining elements)
- Create a bitmask
mask
representing these available distinct elements - If we have fewer than
m
distinct elements available, skip this state
for j, x in enumerate(nums):
if (i >> j & 1) == 0 and x not in s: # Unassigned and distinct
s.add(x)
mask |= 1 << j
Step 3: Enumerate Subsets
For the available elements represented by mask
, enumerate all its subsets using the technique j = (j - 1) & mask
. This efficiently generates all subsets of mask
.
For each subset j
:
- Check if
g[j] != -1
(valid subset) - Update
f[i | j] = min(f[i | j], f[i] + g[j])
This transition means: if we're at state i
and add subset j
, the new state is i | j
with cost f[i] + g[j]
.
j = mask
while j:
if g[j] != -1:
f[i | j] = min(f[i | j], f[i] + g[j])
j = (j - 1) & mask
Step 4: Return Result
The final answer is f[2^n - 1]
, which represents the state where all elements are assigned. If this value is still infinity, it means no valid partition exists, so return -1
.
The time complexity is O(3^n)
due to iterating through all subsets and their subsets, and space complexity is O(2^n)
for the DP and preprocessing arrays.
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a concrete example with nums = [6, 3, 8, 1, 3, 1, 2, 2]
and k = 4
.
Initial Setup:
- Array length
n = 8
, so each subset must havem = n/k = 8/4 = 2
elements - We need to create 4 subsets, each with 2 distinct elements
Step 1: Preprocessing Valid Subsets
We'll compute incompatibilities for all possible 2-element subsets. Using binary representation where bit position corresponds to array index:
Some examples of valid subsets:
-
Binary
00000011
(decimal 3) = indices [0,1] = elements [6,3]- No duplicates, incompatibility = 6 - 3 = 3
g[3] = 3
-
Binary
00001001
(decimal 9) = indices [0,3] = elements [6,1]- No duplicates, incompatibility = 6 - 1 = 5
g[9] = 5
-
Binary
00011000
(decimal 24) = indices [3,4] = elements [1,3]- No duplicates, incompatibility = 3 - 1 = 2
g[24] = 2
-
Binary
00101000
(decimal 40) = indices [3,5] = elements [1,1]- Contains duplicates!
g[40] = -1
(invalid)
Step 2: Dynamic Programming
Starting with f[0] = 0
(no elements assigned), we build up our solution:
State i = 0
(binary 00000000
):
- All elements available: [6,3,8,1,3,1,2,2]
- Distinct available elements: {6,3,8,1,2} at positions [0,1,2,3,6]
- Mask =
01001111
(positions where distinct elements exist)
We try forming 2-element subsets from this mask:
- Subset
00000011
(elements [6,3]):f[3] = 0 + 3 = 3
- Subset
00000101
(elements [6,8]):f[5] = 0 + 2 = 2
- Subset
00001001
(elements [6,1]):f[9] = 0 + 5 = 5
- And so on...
State i = 3
(binary 00000011
):
- Already used: positions [0,1] (elements [6,3])
- Remaining: [8,1,3,1,2,2] at positions [2,3,4,5,6,7]
- Distinct remaining: {8,1,3,2} at positions [2,3,4,6]
- Mask =
01011100
Valid transitions:
- Subset
00001100
(elements [8,1]):f[15] = min(f[15], 3 + 7) = 10
- Subset
00010100
(elements [8,3]):f[23] = min(f[23], 3 + 5) = 8
- Subset
01001000
(elements [1,2]):f[75] = min(f[75], 3 + 1) = 4
Continuing the process...
Eventually we reach state i = 255
(binary 11111111
) where all elements are assigned.
Step 3: Finding the Optimal Partition
After exploring all possibilities, we find the minimum sum is achieved with:
- Subset 1: [1,3] (indices 3,4) → incompatibility = 2
- Subset 2: [1,2] (indices 5,6) → incompatibility = 1
- Subset 3: [2,3] (indices 7,1) → incompatibility = 1
- Subset 4: [6,8] (indices 0,2) → incompatibility = 2
Total sum = 2 + 1 + 1 + 2 = 6
Therefore, f[255] = 6
is our answer.
This walkthrough demonstrates how the algorithm systematically explores all valid partitions using bit manipulation to track states and dynamic programming to avoid redundant calculations.
Solution Implementation
1class Solution:
2 def minimumIncompatibility(self, nums: List[int], k: int) -> int:
3 n = len(nums)
4 subset_size = n // k # Size of each subset
5
6 # incompatibility[mask] stores the incompatibility of the subset represented by mask
7 # -1 means invalid subset (has duplicates or wrong size)
8 incompatibility = [-1] * (1 << n)
9
10 # Precompute incompatibility for all valid subsets of size subset_size
11 for mask in range(1, 1 << n):
12 if bin(mask).count('1') != subset_size:
13 continue
14
15 subset_elements = set()
16 min_val, max_val = 20, 0 # Initialize with extreme values (nums[i] <= 16)
17
18 # Check if this subset is valid (no duplicates) and find min/max
19 for idx, num in enumerate(nums):
20 if mask >> idx & 1: # If idx-th bit is set in mask
21 if num in subset_elements:
22 # Duplicate found, invalid subset
23 break
24 subset_elements.add(num)
25 min_val = min(min_val, num)
26 max_val = max(max_val, num)
27
28 # If subset has no duplicates, store its incompatibility
29 if len(subset_elements) == subset_size:
30 incompatibility[mask] = max_val - min_val
31
32 # dp[mask] = minimum sum of incompatibilities for elements selected by mask
33 dp = [float('inf')] * (1 << n)
34 dp[0] = 0 # Base case: empty set has 0 incompatibility
35
36 # Try all possible states
37 for used_mask in range(1 << n):
38 if dp[used_mask] == float('inf'):
39 continue
40
41 # Find all unused elements and their first occurrence positions
42 unused_elements = set()
43 available_mask = 0
44 for idx, num in enumerate(nums):
45 if (used_mask >> idx & 1) == 0 and num not in unused_elements:
46 unused_elements.add(num)
47 available_mask |= 1 << idx
48
49 # Need at least subset_size unused distinct elements to form next subset
50 if len(unused_elements) < subset_size:
51 continue
52
53 # Try all possible subsets from available positions
54 subset_mask = available_mask
55 while subset_mask:
56 if incompatibility[subset_mask] != -1:
57 # Update dp for state including this new subset
58 dp[used_mask | subset_mask] = min(
59 dp[used_mask | subset_mask],
60 dp[used_mask] + incompatibility[subset_mask]
61 )
62 # Generate next subset of available_mask
63 subset_mask = (subset_mask - 1) & available_mask
64
65 # Return result for all elements used, or -1 if impossible
66 return dp[-1] if dp[-1] != float('inf') else -1
67
1class Solution {
2 public int minimumIncompatibility(int[] nums, int k) {
3 int n = nums.length;
4 int subsetSize = n / k; // Size of each subset
5
6 // incompatibility[mask] stores the incompatibility of the subset represented by mask
7 // -1 means invalid subset (has duplicates or wrong size)
8 int[] incompatibility = new int[1 << n];
9 Arrays.fill(incompatibility, -1);
10
11 // Precompute incompatibility for all valid subsets of size subsetSize
12 for (int mask = 1; mask < (1 << n); mask++) {
13 // Only process subsets with exactly subsetSize elements
14 if (Integer.bitCount(mask) != subsetSize) {
15 continue;
16 }
17
18 Set<Integer> uniqueValues = new HashSet<>();
19 int minValue = 20; // Maximum possible value based on problem constraints
20 int maxValue = 0;
21
22 // Check all elements in current subset
23 for (int bitIndex = 0; bitIndex < n; bitIndex++) {
24 if ((mask >> bitIndex & 1) == 1) { // If bit is set, element is in subset
25 // If duplicate found, this subset is invalid
26 if (!uniqueValues.add(nums[bitIndex])) {
27 break;
28 }
29 minValue = Math.min(minValue, nums[bitIndex]);
30 maxValue = Math.max(maxValue, nums[bitIndex]);
31 }
32 }
33
34 // Valid subset has all unique values
35 if (uniqueValues.size() == subsetSize) {
36 incompatibility[mask] = maxValue - minValue;
37 }
38 }
39
40 // dp[mask] stores minimum sum of incompatibilities for elements in mask
41 int[] dp = new int[1 << n];
42 final int INFINITY = 1 << 30;
43 Arrays.fill(dp, INFINITY);
44 dp[0] = 0; // Base case: empty set has 0 incompatibility
45
46 // Process all possible states
47 for (int usedMask = 0; usedMask < (1 << n); usedMask++) {
48 // Skip unreachable states
49 if (dp[usedMask] == INFINITY) {
50 continue;
51 }
52
53 // Find available unique elements not yet used
54 Set<Integer> availableUniqueValues = new HashSet<>();
55 int availableMask = 0;
56
57 for (int bitIndex = 0; bitIndex < n; bitIndex++) {
58 // If element not used and its value not already selected
59 if ((usedMask >> bitIndex & 1) == 0 && !availableUniqueValues.contains(nums[bitIndex])) {
60 availableUniqueValues.add(nums[bitIndex]);
61 availableMask |= 1 << bitIndex;
62 }
63 }
64
65 // Need at least subsetSize unique values to form a valid subset
66 if (availableUniqueValues.size() < subsetSize) {
67 continue;
68 }
69
70 // Try all subsets of available elements
71 for (int subset = availableMask; subset > 0; subset = (subset - 1) & availableMask) {
72 // If this subset is valid (has precomputed incompatibility)
73 if (incompatibility[subset] != -1) {
74 int newMask = usedMask | subset;
75 dp[newMask] = Math.min(dp[newMask], dp[usedMask] + incompatibility[subset]);
76 }
77 }
78 }
79
80 // Return result for all elements used, or -1 if impossible
81 int fullMask = (1 << n) - 1;
82 return dp[fullMask] == INFINITY ? -1 : dp[fullMask];
83 }
84}
85
1class Solution {
2public:
3 int minimumIncompatibility(vector<int>& nums, int k) {
4 int n = nums.size();
5 int groupSize = n / k; // Size of each group
6
7 // incompatibility[mask] stores the incompatibility value for a subset represented by mask
8 // -1 means the subset is invalid (has duplicates or wrong size)
9 int incompatibility[1 << n];
10 memset(incompatibility, -1, sizeof(incompatibility));
11
12 // Precompute incompatibility for all valid subsets of size groupSize
13 for (int mask = 1; mask < (1 << n); ++mask) {
14 // Skip if subset size is not equal to groupSize
15 if (__builtin_popcount(mask) != groupSize) {
16 continue;
17 }
18
19 unordered_set<int> uniqueValues;
20 int minValue = 20; // Maximum possible value according to constraints
21 int maxValue = 0; // Minimum possible value
22
23 // Check all elements in current subset
24 for (int j = 0; j < n; ++j) {
25 if (mask >> j & 1) { // If j-th element is in the subset
26 // If duplicate found, this subset is invalid
27 if (uniqueValues.count(nums[j])) {
28 break;
29 }
30 uniqueValues.insert(nums[j]);
31 minValue = min(minValue, nums[j]);
32 maxValue = max(maxValue, nums[j]);
33 }
34 }
35
36 // If all elements are unique, calculate incompatibility
37 if (uniqueValues.size() == groupSize) {
38 incompatibility[mask] = maxValue - minValue;
39 }
40 }
41
42 // dp[mask] stores minimum sum of incompatibilities for elements in mask
43 int dp[1 << n];
44 memset(dp, 0x3f, sizeof(dp)); // Initialize with large value
45 dp[0] = 0; // Base case: empty set has 0 incompatibility
46
47 // Dynamic programming to find minimum total incompatibility
48 for (int usedMask = 0; usedMask < (1 << n); ++usedMask) {
49 // Skip if current state is unreachable
50 if (dp[usedMask] == 0x3f3f3f3f) {
51 continue;
52 }
53
54 // Find available elements and their first occurrences
55 unordered_set<int> availableValues;
56 int availableMask = 0;
57
58 for (int j = 0; j < n; ++j) {
59 // If element j is not used and its value hasn't been seen
60 if ((usedMask >> j & 1) == 0 && !availableValues.count(nums[j])) {
61 availableValues.insert(nums[j]);
62 availableMask |= 1 << j;
63 }
64 }
65
66 // Not enough unique values to form a group
67 if (availableValues.size() < groupSize) {
68 continue;
69 }
70
71 // Try all subsets of available elements
72 for (int subset = availableMask; subset > 0; subset = (subset - 1) & availableMask) {
73 // If this subset forms a valid group
74 if (incompatibility[subset] != -1) {
75 dp[usedMask | subset] = min(dp[usedMask | subset],
76 dp[usedMask] + incompatibility[subset]);
77 }
78 }
79 }
80
81 // Return result: -1 if impossible, otherwise the minimum incompatibility
82 return dp[(1 << n) - 1] == 0x3f3f3f3f ? -1 : dp[(1 << n) - 1];
83 }
84};
85
1/**
2 * Calculates the minimum possible sum of incompatibilities across all subsets
3 * when dividing nums into k subsets of equal size.
4 * Incompatibility of a subset is the difference between max and min elements.
5 *
6 * @param nums - Array of integers to be divided into subsets
7 * @param k - Number of subsets to divide into
8 * @returns Minimum sum of incompatibilities, or -1 if impossible
9 */
10function minimumIncompatibility(nums: number[], k: number): number {
11 const arrayLength = nums.length;
12 const subsetSize = Math.floor(arrayLength / k);
13
14 // Store incompatibility values for each valid subset (bitmask representation)
15 // -1 means invalid subset (has duplicates or wrong size)
16 const incompatibilityMap: number[] = Array(1 << arrayLength).fill(-1);
17
18 // Pre-calculate incompatibility for all valid subsets of size m
19 for (let mask = 1; mask < (1 << arrayLength); ++mask) {
20 // Skip if not exactly m elements in this subset
21 if (bitCount(mask) !== subsetSize) {
22 continue;
23 }
24
25 const uniqueElements: Set<number> = new Set();
26 let minValue = 20; // Maximum possible value based on constraints
27 let maxValue = 0; // Minimum possible value
28
29 // Check all elements in this subset
30 for (let bitIndex = 0; bitIndex < arrayLength; ++bitIndex) {
31 if ((mask >> bitIndex) & 1) {
32 // Found duplicate - invalid subset
33 if (uniqueElements.has(nums[bitIndex])) {
34 break;
35 }
36 uniqueElements.add(nums[bitIndex]);
37 minValue = Math.min(minValue, nums[bitIndex]);
38 maxValue = Math.max(maxValue, nums[bitIndex]);
39 }
40 }
41
42 // Valid subset if all elements are unique
43 if (uniqueElements.size === subsetSize) {
44 incompatibilityMap[mask] = maxValue - minValue;
45 }
46 }
47
48 const INFINITY = 1e9;
49 // Dynamic programming array: dp[mask] = minimum incompatibility sum for elements in mask
50 const dp: number[] = Array(1 << arrayLength).fill(INFINITY);
51 dp[0] = 0; // Base case: empty set has 0 incompatibility
52
53 // Process all possible states
54 for (let usedMask = 0; usedMask < (1 << arrayLength); ++usedMask) {
55 // Skip if current state is unreachable
56 if (dp[usedMask] === INFINITY) {
57 continue;
58 }
59
60 // Find available unique elements not yet used
61 const availableUnique: Set<number> = new Set();
62 let availableMask = 0;
63
64 for (let bitIndex = 0; bitIndex < arrayLength; ++bitIndex) {
65 // Element not used and value not seen yet
66 if (((usedMask >> bitIndex) & 1) === 0 && !availableUnique.has(nums[bitIndex])) {
67 availableUnique.add(nums[bitIndex]);
68 availableMask |= 1 << bitIndex;
69 }
70 }
71
72 // Not enough unique elements to form a complete subset
73 if (availableUnique.size < subsetSize) {
74 continue;
75 }
76
77 // Try all possible subsets from available elements
78 // Iterate through all submasks of availableMask
79 for (let submask = availableMask; submask > 0; submask = (submask - 1) & availableMask) {
80 // Check if this submask forms a valid subset
81 if (incompatibilityMap[submask] !== -1) {
82 const nextState = usedMask | submask;
83 dp[nextState] = Math.min(dp[nextState], dp[usedMask] + incompatibilityMap[submask]);
84 }
85 }
86 }
87
88 // Return result for using all elements, or -1 if impossible
89 const allElementsMask = (1 << arrayLength) - 1;
90 return dp[allElementsMask] === INFINITY ? -1 : dp[allElementsMask];
91}
92
93/**
94 * Counts the number of set bits (1s) in the binary representation of a number
95 * Uses bit manipulation tricks for efficient counting
96 *
97 * @param i - Integer to count bits for
98 * @returns Number of set bits
99 */
100function bitCount(i: number): number {
101 // Count bits in groups of 2
102 i = i - ((i >>> 1) & 0x55555555);
103 // Count bits in groups of 4
104 i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
105 // Count bits in groups of 8
106 i = (i + (i >>> 4)) & 0x0f0f0f0f;
107 // Sum all counts
108 i = i + (i >>> 8);
109 i = i + (i >>> 16);
110 // Return final count (max 32 bits, so mask with 0x3f)
111 return i & 0x3f;
112}
113
Time and Space Complexity
The time complexity of this algorithm is O(3^n)
, where n
is the length of the input array.
The analysis breaks down as follows:
- The first loop iterates through all
2^n
possible subsets to precompute valid groups of sizem
. For each subset, we check if it contains exactlym
elements and if all elements are distinct. This takesO(2^n × n)
time. - The dynamic programming part uses bitmask DP where
f[i]
represents the minimum incompatibility for elements selected by maski
. - For each state
i
(there are2^n
states), we enumerate all possible valid subsetsj
that can be added to the current state. The key insight is that for each position in the array, it can be in one of three states: already used (in maski
), included in the next subsetj
, or not included in either. This gives us the3^n
complexity. - The line
j = (j - 1) & mask
efficiently iterates through all subsets ofmask
, which contributes to the3^n
bound when summed across all states.
The space complexity is O(2^n)
due to:
- Array
g
of size2^n
storing the incompatibility values for all valid subsets of sizem
- Array
f
of size2^n
storing the DP states for all possible selections of elements - Additional space used is
O(n)
for temporary variables, which doesn't affect the overall complexity
Learn more about how to find time and space complexity quickly.
Common Pitfalls
Pitfall 1: Incorrectly Handling Duplicate Elements in Available Mask
The Problem:
When building the available_mask
for unused elements, a common mistake is including all positions of duplicate elements instead of just the first occurrence. This leads to incorrect subset enumeration and potentially invalid states.
# INCORRECT approach - includes all positions of duplicates
available_mask = 0
for idx, num in enumerate(nums):
if (used_mask >> idx & 1) == 0: # Just checking if unused
available_mask |= 1 << idx
This would mark all occurrences of duplicate values as available, causing the algorithm to consider invalid subsets that contain the same value multiple times.
The Solution: Track which values have already been seen and only include the first occurrence of each unused value:
# CORRECT approach - only first occurrence of each distinct value
unused_elements = set()
available_mask = 0
for idx, num in enumerate(nums):
if (used_mask >> idx & 1) == 0 and num not in unused_elements:
unused_elements.add(num)
available_mask |= 1 << idx
Pitfall 2: Inefficient Subset Enumeration
The Problem:
Attempting to enumerate all possible subsets of size subset_size
from the available elements using recursion or nested loops, which is inefficient and complex:
# INEFFICIENT - checking all 2^n subsets repeatedly
for subset_mask in range(1, 1 << n):
if bin(subset_mask).count('1') == subset_size:
# Check if subset is valid...
The Solution:
Use the bit manipulation technique (j - 1) & mask
to efficiently enumerate only the subsets of the available mask:
# EFFICIENT - only enumerate subsets of available_mask subset_mask = available_mask while subset_mask: if incompatibility[subset_mask] != -1: # Process valid subset subset_mask = (subset_mask - 1) & available_mask
Pitfall 3: Not Validating Subset Size Early
The Problem: Forgetting to check if there are enough distinct unused elements before attempting to form the next subset:
# MISSING validation - may attempt impossible transitions
for used_mask in range(1 << n):
# Directly trying to form subsets without checking feasibility
subset_mask = available_mask
while subset_mask:
# ...
The Solution:
Always verify that you have at least subset_size
distinct elements available before attempting to form new subsets:
# With proper validation
if len(unused_elements) < subset_size:
continue # Skip this state as it's impossible to form a valid subset
Pitfall 4: Incorrect Base Case or Initialization
The Problem: Setting incorrect initial values for the DP array or incompatibility array:
# INCORRECT - wrong initialization dp = [0] * (1 << n) # Should be infinity except dp[0] incompatibility = [0] * (1 << n) # Should be -1 for invalid subsets
The Solution: Properly initialize arrays to distinguish between valid and invalid states:
# CORRECT initialization
incompatibility = [-1] * (1 << n) # -1 indicates invalid subset
dp = [float('inf')] * (1 << n) # infinity for unvisited states
dp[0] = 0 # Base case: empty set has 0 cost
These pitfalls can cause the algorithm to produce incorrect results or fail to find valid partitions when they exist. Careful attention to duplicate handling, efficient enumeration, and proper validation ensures the solution works correctly for all edge cases.
Which algorithm should you use to find a node that is close to the root of the tree?
Recommended Readings
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Bitmask and Dynamic Programming Bit manipulation is a crucial aspect of computer programming and one of the most powerful tools for bit manipulation is bitmasks Let's first understand what a bit is A bit is a binary digit It's the smallest piece of data in a computer and can be
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Want a Structured Path to Master System Design Too? Don’t Miss This!