85. Maximal Rectangle
Problem Description
This problem involves a binary matrix, which is a grid (rows x cols
) containing only 0
s and 1
s. The objective is to find the largest rectangle, which is composed entirely of 1
s, and return the area of that rectangle. To clarify, the area of a rectangle is calculated by multiplying its width by its height.
Intuition
The solution approach capitalizes on a pattern that can be observed by examining the matrix row by row. By treating each row as the base, we can convert the problem into a series of "largest rectangle in histogram" problems.
Here's how it works:
-
We start with a heights array to keep track of the heights of the 'bars' of
1
s above each column at each row. As we move from one row to another, we update the heights: if we see a1
, the height increases by 1; if a0
, the height resets to 0. -
With the updated heights array for each row, we determine the area of the largest rectangle that could be formed in the histogram represented by the heights.
-
For the histogram, we need to identify the limits of expansion for each 'bar' to form the largest rectangle under it. We do this by keeping track of the indices of the previous smaller bar on the left and the next smaller bar on the right for each bar. We use stacks to manage this efficiently as we scan the heights from left to right and then right to left.
-
Finally, for each height, now knowing how far it can expand to the left and right without encountering a shorter bar, we can calculate the largest rectangle that includes that bar as the highest bar in the rectangle. The maximum such area encountered is kept as the answer.
By performing these steps, we gradually build up and keep track of potential rectangle areas through each row, and by the end, we will have found the largest rectangle possible in the entire matrix.
Learn more about Stack, Dynamic Programming and Monotonic Stack patterns.
Solution Approach
The solution to the problem involves two main functions: maximalRectangle
and largestRectangleArea
.
maximalRectangle
Function
The maximalRectangle
function employs dynamic programming by scanning through each row of the matrix and updating the heights
array where the value at each index represents the height of the rectangle ending at that index. Specifically:
- It initializes an array
heights
with a length equal to the number of columns in the matrix. This array stores the height of the 'bars' which contribute to forming the potential rectangles. - It iterates through each row in the matrix and for each element:
- It checks if the element is a
1
. If so, it increments the corresponding height inheights
by 1 (because we have an additional 'bar' of height 1). - If the element is a
0
, it resets the corresponding height inheights
to 0 (as there's no 'bar' at this column for the current row base).
- It checks if the element is a
- After updating the
heights
for a row, it calls thelargestRectangleArea
to compute the largest rectangle that can be formed in the histogram described byheights
. - It keeps track of the maximum area encountered after processing each row.
largestRectangleArea
Function
The largestRectangleArea
function calculates the largest rectangle area in a histogram given by heights
:
- It initializes two arrays,
left
andright
, with lengths equal to the number of elements (n
) inheights
. These arrays store the indices of the next smaller element to the left and right, respectively, for each bar. By default, theleft
array is filled with-1
and theright
array is filled withn
. - It then uses two passes (left to right and right to left) with a stack
stk
to figure out for each bar the bounds within which the rectangle with that bar as the tallest can extend:- In the left to right pass, it keeps index positions in the stack where the bar heights are in non-decreasing order. When a bar at current index
i
is shorter than the one at the top of the stack, it means we found a right boundary for the bar at the stack's top. We can then update theright
bound for that position and pop the stack. If the stack becomes empty, it means there's no smaller bar to the left. - The process is similar in the right to left pass, which updates the
left
bounds.
- In the left to right pass, it keeps index positions in the stack where the bar heights are in non-decreasing order. When a bar at current index
- At the end of these passes, for each bar, we know how far left and right it can extend to form the largest rectangle under it. Using this information, we calculate the maximum possible area for each bar, which is
height[i] * (right[i] - left[i] - 1)
(since we've found the bounds excluding the current bar). - The function finally returns the maximum area found, which the
maximalRectangle
function uses to determine the largest area in the matrix.
By using the dynamic programming approach with histogram area calculations, this solution helps efficiently solve the problem by breaking it down into a series of subproblems (finding the largest rectangle in a histogram) that build on each other to give the overall answer.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's take a small binary matrix to walk through the solution approach:
Suppose we have the following 3x4
binary matrix:
1 0 1 0 1 1 1 1 0 1 1 0
We will apply the maximalRectangle
function and break down the process:
Step 1: Initialize the heights
array with a length equal to the number of columns (4 in this case).
Step 2: Process the first row [1 0 1 0]
. The heights
array is now [1 0 1 0]
.
Step 3: Call largestRectangleArea
:
- The stack initially is empty.
- Iterating from the left, we keep track of 'left limits,' and at the end, the
left
array is[-1, -1, -1, -1]
. - Iterating from the right, we keep track of 'right limits,' and the
right
array is[1, 4, 3, 4]
. - Since the first and third bars are of the same height, the largest area is
1 * (1 - (-1) - 1) = 1
for each.
Step 4: Process the second row [1 1 1 1]
. The heights
array is updated to [2 1 2 1]
.
Step 5: Call largestRectangleArea
again:
- The stack will keep track of bars and will find that the 'left limits' are
[-1, -1, -1, -1]
and 'right limits' are[4, 4, 4, 4]
. - The largest rectangle includes all four bars with smallest height 1, so the area is
1 * (4 - (-1) - 1) = 4
.
Step 6: Process the third row [0 1 1 0]
. The heights
array is now [0 2 3 0]
.
Step 7: Call largestRectangleArea
:
- The 'left limits' are
[-1, -1, 1, -1]
and the 'right limits' are[4, 2, 4, 4]
. - The largest rectangle can be formed by the third bar of height
3
, with the area being3 * (4 - (1) - 1) = 6
.
In the end, the largest rectangle area found in the matrix is 6, and that is the output of our maximalRectangle
function.
By performing each of these steps, we iteratively found the largest rectangle after each row and ended up with the largest rectangle in the entire matrix.
Solution Implementation
1from typing import List
2
3class Solution:
4 def maximalRectangle(self, matrix: List[List[str]]) -> int:
5 # This function finds the maximal rectangle of '1's in a binary matrix.
6
7 # Initialize the heights array with zeros based on the width of the matrix
8 heights = [0] * len(matrix[0])
9 # Initialize the answer to 0, which will hold the area of the largest rectangle
10 max_area = 0
11
12 # Iterate through each row in the binary matrix
13 for row in matrix:
14 # Update heights reflecting continuous '1's in a column
15 for col_idx, val in enumerate(row): # col_idx is the index, val is the value at that position
16 if val == "1":
17 # Increase the current column's height if the row value is a '1'
18 heights[col_idx] += 1
19 else:
20 # Reset the height to 0 if the row value is '0'
21 heights[col_idx] = 0
22
23 # Update the max_area with the largest rectangle found in the current histogram of heights
24 max_area = max(max_area, self.largestRectangleArea(heights))
25
26 # Return the maximal rectangle area found
27 return max_area
28
29 def largestRectangleArea(self, heights: List[int]) -> int:
30 # This function calculates the largest rectangle in a histogram.
31
32 # Length of the heights list
33 num_heights = len(heights)
34
35 # Stack to keep track of indices for heights
36 stack = []
37
38 # Arrays to store indices of previous and next smaller heights
39 prev_smaller = [-1] * num_heights
40 next_smaller = [num_heights] * num_heights
41
42 # Forward pass to find previous smaller heights
43 for i, height in enumerate(heights):
44 # If the current height is lesser than the height at the stack's top index,
45 # pop the stack until a smaller height is found
46 while stack and heights[stack[-1]] >= height:
47 stack.pop()
48 if stack:
49 prev_smaller[i] = stack[-1]
50 stack.append(i)
51
52 # Reset stack for next pass
53 stack = []
54
55 # Backward pass to find next smaller heights
56 for i in range(num_heights - 1, -1, -1):
57 cur_height = heights[i]
58 while stack and heights[stack[-1]] >= cur_height:
59 stack.pop()
60 if stack:
61 next_smaller[i] = stack[-1]
62 stack.append(i)
63
64 # Calculate the largest rectangle area by finding the maximum area
65 # for each height, considering the distance to the previous and next smaller heights.
66 max_area = max(
67 height * (next_smaller[i] - prev_smaller[i] - 1) for i, height in enumerate(heights)
68 )
69
70 # Return the maximum area found
71 return max_area
72
1class Solution {
2 public int maximalRectangle(char[][] matrix) {
3
4 // Get the number of columns in the matrix
5 int numColumns = matrix[0].length;
6
7 // Create an array to store the heights of '1's in histogram-like form
8 int[] heights = new int[numColumns];
9
10 // Variable to store the maximum area of rectangle
11 int maxArea = 0;
12
13 // Iterate over each row of the matrix
14 for (char[] row : matrix) {
15 // Update the heights array to reflect the current row
16 for (int j = 0; j < numColumns; ++j) {
17 // Adjacent '1's in a column are treated as consecutive bar heights in the histogram
18 heights[j] = row[j] == '1' ? heights[j] + 1 : 0;
19 }
20 // Find the largest rectangle in the current histogram
21 maxArea = Math.max(maxArea, largestRectangleArea(heights));
22 }
23
24 return maxArea;
25 }
26
27 private int largestRectangleArea(int[] heights) {
28 // Variable for the maximum area found
29 int maxArea = 0;
30
31 // Stack to keep track of the indices of the heights array
32 Deque<Integer> stack = new ArrayDeque<>();
33
34 // Array to keep track of the left boundary of each bar
35 int[] left = new int[heights.length];
36
37 // Array to keep track of the right boundary of each bar
38 int[] right = new int[heights.length];
39
40 // Initialize all right boundaries to point to the end of the heights array
41 Arrays.fill(right, heights.length);
42
43 // Iterate over the heights array to compute the left and right boundaries for each bar
44 for (int i = 0; i < heights.length; ++i) {
45 // Remove all bars from the stack which are taller than the current bar
46 while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
47 // Set the right boundary for the bar at the top of the stack
48 right[stack.pop()] = i;
49 }
50 // Set the left boundary for the current bar
51 left[i] = stack.isEmpty() ? -1 : stack.peek();
52 // Push the current index onto the stack
53 stack.push(i);
54 }
55
56 // Compute the area based on the heights and boundaries of each bar
57 for (int i = 0; i < heights.length; ++i) {
58 maxArea = Math.max(maxArea, heights[i] * (right[i] - left[i] - 1));
59 }
60
61 // Return the maximum area found
62 return maxArea;
63 }
64}
65
1#include <vector>
2#include <stack>
3using namespace std;
4
5class Solution {
6public:
7 // Function to compute the maximal rectangle area in a 2D binary matrix
8 int maximalRectangle(vector<vector<char>>& matrix) {
9 if (matrix.empty() || matrix[0].empty()) return 0; // handle empty matrix input
10
11 int num_columns = matrix[0].size();
12 vector<int> heights(num_columns, 0);
13 int max_area = 0;
14
15 // Process each row of the matrix
16 for (auto& row : matrix) {
17 // Update the heights of the histogram representation
18 for (int j = 0; j < num_columns; ++j) {
19 if (row[j] == '1') {
20 ++heights[j]; // Increase height for continuous '1's
21 } else {
22 heights[j] = 0; // Reset height if '0' is encountered
23 }
24 }
25 // Get the max rectangle area in histogram and update max_area
26 max_area = max(max_area, largestRectangleArea(heights));
27 }
28 return max_area;
29 }
30
31 // Helper function to calculate the area of the largest rectangle in a histogram
32 int largestRectangleArea(vector<int>& heights) {
33 int result = 0;
34 int n = heights.size();
35 stack<int> index_stack;
36 vector<int> left(n, -1);
37 vector<int> right(n, n);
38
39 // Calculate the indices of the next smaller element on the left and right
40 for (int i = 0; i < n; ++i) {
41 while (!index_stack.empty() && heights[index_stack.top()] >= heights[i]) {
42 right[index_stack.top()] = i; // Update right index
43 index_stack.pop();
44 }
45 left[i] = index_stack.empty() ? -1 : index_stack.top(); // Update left index
46 index_stack.push(i);
47 }
48
49 // Compute the area for each bar considering the range [left, right]
50 for (int i = 0; i < n; ++i) {
51 result = max(result, heights[i] * (right[i] - left[i] - 1));
52 }
53
54 return result;
55 }
56};
57
1// Assuming that we have the following global declarations
2// of interface and enums to match the C++ types
3interface ICharMatrix extends Array<Array<string>> {}
4
5// Global variable for maximum area, initialized to zero
6let maxArea: number = 0;
7
8// Function to compute the maximal rectangle area in a 2D binary matrix
9function maximalRectangle(matrix: ICharMatrix): number {
10 if (matrix.length === 0 || matrix[0].length === 0) return 0; // handle empty matrix input
11
12 const numColumns: number = matrix[0].length;
13 const heights: number[] = new Array(numColumns).fill(0);
14
15 // Process each row of the matrix
16 for (const row of matrix) {
17 // Update the heights of the histogram representation
18 for (let j = 0; j < numColumns; ++j) {
19 if (row[j] === '1') {
20 ++heights[j]; // Increase height for continuous '1's
21 } else {
22 heights[j] = 0; // Reset height if '0' is encountered
23 }
24 }
25 // Get the max rectangle area in histogram and update maxArea
26 maxArea = Math.max(maxArea, largestRectangleArea(heights));
27 }
28 return maxArea;
29}
30
31// Helper function to calculate the area of the largest rectangle in a histogram
32function largestRectangleArea(heights: number[]): number {
33 let result: number = 0;
34 const n: number = heights.length;
35 const indexStack: number[] = [];
36 const left: number[] = new Array(n).fill(-1);
37 const right: number[] = new Array(n).fill(n);
38
39 // Calculate the indices of the next smaller element on the left and right
40 for (let i = 0; i < n; ++i) {
41 while (indexStack.length !== 0 && heights[indexStack[indexStack.length - 1]] >= heights[i]) {
42 right[indexStack[indexStack.length - 1]] = i; // Update right index
43 indexStack.pop();
44 }
45 left[i] = indexStack.length === 0 ? -1 : indexStack[indexStack.length - 1]; // Update left index
46 indexStack.push(i);
47 }
48
49 // Compute the area for each bar considering the range [left, right]
50 for (let i = 0; i < n; ++i) {
51 result = Math.max(result, heights[i] * (right[i] - left[i] - 1));
52 }
53
54 return result;
55}
56
Time and Space Complexity
The code provided has two parts that contribute to the overall computational complexity: the iteration through the matrix to calculate the height of histograms (maximalRectangle
function) and the calculation of the largest rectangle in a histogram (largestRectangleArea
function).
Time Complexity:
-
For
maximalRectangle
: The function iterates through each element in the matrix once. If the matrix size ism * n
, wherem
is the number of rows andn
is the number of columns, this part has a time complexity ofO(m*n)
. -
For
largestRectangleArea
withinmaximalRectangle
: For each row, we calculate the largest rectangle area, which involves iterating through the histogram heights twice (once for calculatingleft
limits and once forright
limits), both of which areO(n)
. Then we compute the area for each bar, also inO(n)
. As this process is repeated for every rowm
times, the total time complexity for this part isO(m*n)
.
Thus, the overall time complexity of the code is O(m*n + m*n)
, which simplifies to O(m*n)
.
Space Complexity:
-
The space required for the
heights
,left
,right
, andstk
inlargestRectangleArea
isn
each, which amounts to4*n
. Sincen
is the size of the largest dimension (number of columns), the space complexity isO(n)
. -
No additional space proportional to the size of the input matrix is required outside the
largestRectangleArea
function.
Therefore, the total space complexity of the code is O(n)
.
Learn more about how to find time and space complexity quickly using problem constraints.
What are the two properties the problem needs to have for dynamic programming to be applicable? (Select 2)
Recommended Readings
Stack Intro Imagine you have a pile of books on your desk If you want to add a new book you place it on top If you want to read a book you take it from the top And if you simply want to see which book is on the top you
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Monotonic Stack Deque Intro If you'd prefer a video div class responsive iframe iframe src https www youtube com embed Dq_ObZwTY_Q title YouTube video player frameborder 0 allow accelerometer autoplay clipboard write encrypted media gyroscope picture in picture web share allowfullscreen iframe div The word monotonic means a list or
Want a Structured Path to Master System Design Too? Don’t Miss This!