2888. Reshape Data Concatenate
Problem Description
The given problem requires concatenating two DataFrames df1
and df2
vertically to create a single DataFrame. Each DataFrame consists of a student_id
, name
, and age
. The purpose of the vertical concatenation is to stack the rows of df2
below the rows of df1
while maintaining the order and structure of the columns.
To accomplish the task effectively, the solution must ensure that both DataFrames are combined such that:
- The
student_id
,name
, andage
columns fromdf2
append directly below the corresponding columns indf1
. - The resulting DataFrame should not have duplicate indexes; i.e., the index should be reset or ignored during the concatenation process to ensure a unique and ordered sequence from 0 through the last row.
Intuition
The intuition behind the solution stems from understanding the pandas library's capabilities in handling DataFrames. Concatenation is a common operation in pandas that enables us to combine multiple DataFrames along a particular axis - either row-wise (axis=0) or column-wise (axis=1).
Since we want to concatenate the DataFrames vertically, we will be concatenating along axis=0
. The pd.concat
function from pandas is used, with two key parameters passed into it:
- The first parameter is a list of the DataFrames to concatenate:
[df1, df2]
. This indicates to thepd.concat
function which DataFrames are involved in the operation. - The second parameter is
ignore_index=True
. This parameter tells pandas to ignore the existing index of both DataFrames and assign a new incremental index starting from 0 to the resulting DataFrame. This results in a clean, non-duplicated index across the combined DataFrame.
With this approach, pd.concat
takes care of realigning the DataFrames and managing the indexes, giving us a straightforward way to achieve the desired outcome without having to manipulate the DataFrames manually.
Solution Approach
To implement the solution, the pandas library is a prerequisite as it provides us with the DataFrame
structure and the pd.concat
function necessary for the operation. Here's how the algorithm works:
-
Import the pandas library, which is a powerful and flexible open-source data analysis/manipulation tool written in Python. It is used here to work with the
DataFrame
structure. -
Define the
concatenateTables
function, which takes twoDataFrames
,df1
anddf2
, as inputs. -
Use the
pd.concat
function inside this function. Thepd.concat
function is a well-defined method in pandas that is specifically designed to concatenate any number ofDataFrame
orSeries
objects along a particular axis – by default,axis=0
for vertical concatenation, which is exactly what we need. -
Enclose
df1
anddf2
within a list and pass it as the first argument topd.concat
. This tells pandas to concatenate these twoDataFrame
objects. -
Set the
ignore_index
parameter ofpd.concat
toTrue
. This instructs pandas to assign a new continuous index to the resultingDataFrame
, starting from0
. -
The
pd.concat
function returns the concatenatedDataFrame
. -
The
concatenateTables
function, therefore, returns the result of thepd.concat
operation, thus completing the vertical concatenation ofdf1
anddf2
into one singleDataFrame
.
By using the pandas pd.concat
function with ignore_index=True
, our algorithm efficiently performs a vertical stack of two separate DataFrame
objects without the need for any complex data structures or additional patterns. This method achieves the goal with minimal code and complexity.
The implementation of this solution does not require the development of new algorithms or the use of complex data structures due to the strength of the pandas library, which abstracts these details away. The high-level abstraction provided by the pd.concat
function substantially simplifies the task, demonstrating the power of using the right tools for data manipulation tasks in Python.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's illustrate the solution approach with a specific example. Suppose we have two DataFrames df1
and df2
with the following data:
DataFrame df1
contains:
student_id | name | age |
---|---|---|
1 | Alice | 21 |
2 | Bob | 22 |
DataFrame df2
contains:
student_id | name | age |
---|---|---|
3 | Charlie | 23 |
4 | David | 24 |
Our goal is to concatenate df1
and df2
vertically.
- First, we import the pandas library as it provides us with the necessary
DataFrame
structure and concatenation functions.
import pandas as pd
- We then define the
DataFrame
instancesdf1
anddf2
for our example, which correspond to the tables above.
df1 = pd.DataFrame({ 'student_id': [1, 2], 'name': ['Alice', 'Bob'], 'age': [21, 22] }) df2 = pd.DataFrame({ 'student_id': [3, 4], 'name': ['Charlie', 'David'], 'age': [23, 24] })
- Next, we define the function
concatenateTables
that will take two DataFrame objects and concatenate them vertically while resetting the index.
def concatenateTables(df1, df2):
return pd.concat([df1, df2], ignore_index=True)
- We call the
concatenateTables
function withdf1
anddf2
as arguments.
resulting_df = concatenateTables(df1, df2)
- The
pd.concat
function called inside theconcatenateTables
function concatenates these two DataFrames and, at the same time, ignores the original indices and assigns a new sequence of index starting from 0 to the combined DataFrame.
The concatenated DataFrame resulting_df
now looks like this:
student_id | name | age | |
---|---|---|---|
0 | 1 | Alice | 21 |
1 | 2 | Bob | 22 |
2 | 3 | Charlie | 23 |
3 | 4 | David | 24 |
As we can see, the student_id
, name
, and age
columns from df2
have been appended directly below the corresponding columns in df1
, and the index has been reset to reflect the new order. The resulting DataFrame is well structured, just as required by the problem statement. This example demonstrates the effectiveness and simplicity of the approach using the pd.concat
function from the pandas library.
Solution Implementation
1# Import the pandas library as pd.
2import pandas as pd
3
4# Define a function to concatenate two dataframes.
5def concatenateTables(dataframe1: pd.DataFrame, dataframe2: pd.DataFrame) -> pd.DataFrame:
6 """
7 Concatenate two pandas DataFrames into a single DataFrame.
8
9 Parameters:
10 dataframe1 (pd.DataFrame): The first DataFrame to concatenate.
11 dataframe2 (pd.DataFrame): The second DataFrame to concatenate.
12
13 Returns:
14 pd.DataFrame: The concatenated DataFrame with the index reset.
15 """
16 # Use the pd.concat method to concatenate the two DataFrames.
17 # The ignore_index=True parameter will reassign new index values to the
18 # resulting dataframe, ranging from 0 to the length of the new dataframe minus one.
19 concatenated_dataframe = pd.concat([dataframe1, dataframe2], ignore_index=True)
20
21 # Return the concatenated DataFrame.
22 return concatenated_dataframe
23
1import java.util.ArrayList;
2import java.util.List;
3import java.util.Map;
4
5public class DataFrameUtils {
6
7 /**
8 * Concatenates two lists of maps simulating dataframes into a single list.
9 *
10 * Each map in the list represents a row, and the keys of the map represent the column names.
11 *
12 * @param dataframe1 The first list of maps to concatenate.
13 * @param dataframe2 The second list of maps to concatenate.
14 * @return A new list containing all the elements from dataframe1 followed by all the elements of dataframe2.
15 */
16 public static List<Map<String, Object>> concatenateTables(
17 List<Map<String, Object>> dataframe1, List<Map<String, Object>> dataframe2) {
18
19 // Create a new ArrayList to hold the concatenated data.
20 List<Map<String, Object>> concatenatedList = new ArrayList<>();
21
22 // Add all rows from the first dataframe.
23 concatenatedList.addAll(dataframe1);
24
25 // Add all rows from the second dataframe.
26 concatenatedList.addAll(dataframe2);
27
28 // Return the concatenated list of maps which simulates a dataframe.
29 return concatenatedList;
30 }
31
32 // Example usage from a main method.
33 public static void main(String[] args) {
34 // Example DataFrames as lists of maps.
35 List<Map<String, Object>> dataframe1 = new ArrayList<>();
36 List<Map<String, Object>> dataframe2 = new ArrayList<>();
37
38 // Populate the dataframes with examples (omitted for brevity).
39
40 // Concatenate the dataframes.
41 List<Map<String, Object>> combinedDataframe = concatenateTables(dataframe1, dataframe2);
42
43 // Print out the concatenated dataframe (omitted for brevity).
44 }
45}
46
1#include <pandas.h> // Assuming a hypothetical C++ equivalent of the Pandas library exists.
2
3// Define a function to concatenate two dataframes.
4DataFrame ConcatenateTables(const DataFrame& dataframe1, const DataFrame& dataframe2) {
5 /**
6 * Concatenate two DataFrames into a single DataFrame.
7 *
8 * Parameters:
9 * dataframe1: The first DataFrame to concatenate.
10 * dataframe2: The second DataFrame to concatenate.
11 *
12 * Returns:
13 * A concatenated DataFrame with the index reset.
14 */
15
16 // Use the Concat method to concatenate the two DataFrames.
17 // Pass true for ignoreIndex to reassign new index values to the resulting DataFrame,
18 // ranging from 0 to the length of the new DataFrame minus one.
19 DataFrame concatenatedDataFrame = pandas::concat({dataframe1, dataframe2}, true);
20
21 // Return the concatenated DataFrame.
22 return concatenatedDataFrame;
23}
24
1import { DataFrame } from 'pandas-js';
2
3// Function to concatenate two dataframes.
4function concatenateTables(dataframe1: DataFrame, dataframe2: DataFrame): DataFrame {
5 /**
6 * Concatenate two pandas-js DataFrames into a single DataFrame.
7 *
8 * @param {DataFrame} dataframe1 - The first DataFrame to concatenate.
9 * @param {DataFrame} dataframe2 - The second DataFrame to concatenate.
10 *
11 * @return {DataFrame} - The concatenated DataFrame with the index reset.
12 */
13
14 // Use the concat method from pandas-js to concatenate the two DataFrames.
15 // The reset_index option will assign new index values to the resulting DataFrame,
16 // ranging from 0 to the length of the new DataFrame minus one.
17 let concatenatedDataFrame = dataframe1.concat(dataframe2).reset_index(drop=true);
18
19 // Return the concatenated DataFrame.
20 return concatenatedDataFrame;
21}
22
23// Usage example (assuming DataFrame objects are created properly):
24// let resultDataFrame = concatenateTables(dataFrame1, dataFrame2);
25
Time and Space Complexity
The time complexity of concatenateTables
when using pd.concat
with ignore_index=True
depends on the combined size of the input DataFrames df1
and df2
. If df1
has n
rows and df2
has m
rows, then the time complexity is O(n + m)
because each row from both DataFrames needs to be copied into the new DataFrame.
The space complexity of this operation is also O(n + m)
, as a new DataFrame is created that holds all rows from both df1
and df2
. In the worst case, all the data from the input DataFrames must be kept in memory to produce the concatenated DataFrame.
The three-steps of Depth First Search are:
- Identify states;
- Draw the state-space tree;
- DFS on the state-space tree.
Recommended Readings
LeetCode Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way we
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https algomonster s3 us east 2 amazonaws com recursion jpg You first
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!