Permutations II

Given a collection of numbers, nums, that might contain duplicates, return all possible unique permutations in any order.

Example 1:

Input: nums = [1,1,2]

Output: [[1,1,2], [1,2,1], [2,1,1]]

Example 2:

Input: nums = [1,2,3]

Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

Constraints:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

Solution

Let's fill in the logic for backtracking1:

  • path_length: indicates the number of elements in path
  • used: an array storing the status of whether an element is used.
  • is_leaf: path_length == len(nums), when path_length is the same as nums's length.
  • get_edges and is_valid: all elements that are unused (used[i]==Flase).

In the implementation, we use an array used to store the whether an element has been used or not. Everytime we use a number, we add it into the path and we mark it used (used[idx] = True). Since there are duplicate values, let's apply methods in Deduplication to deduplicate the results. we want to sort the nums array so that duplicate elements are consecutive, and only proceed when the current element is the first of its occurrance.

Implementation

def permuteUnique(self, nums: List[int]) -> List[List[int]]:
    used = [False] * len(nums)
    ans = []
    nums.sort()
    
    def dfs(path_length, path):
        if path_length == len(nums):
            ans.append(path[:])
            return
        
        for i in range(0, len(nums)):
            if used[i]: continue
            if(i > 0 and nums[i] == nums[i-1] and not used[i-1]): continue
            path.append(nums[i])
            used[i] = True
            dfs(path_length + 1, path)
            used[i] = False
            path.pop()
    
    dfs(0, [])
    return ans

Ready to land your dream job?

Unlock your dream job with a 2-minute evaluator for a personalized learning plan!

Start Evaluator
Discover Your Strengths and Weaknesses: Take Our 2-Minute Quiz to Tailor Your Study Plan:
Question 1 out of 10

What's the output of running the following function using input [30, 20, 10, 100, 33, 12]?

1def fun(arr: List[int]) -> List[int]:
2    import heapq
3    heapq.heapify(arr)
4    res = []
5    for i in range(3):
6        res.append(heapq.heappop(arr))
7    return res
8
1public static int[] fun(int[] arr) {
2    int[] res = new int[3];
3    PriorityQueue<Integer> heap = new PriorityQueue<>();
4    for (int i = 0; i < arr.length; i++) {
5        heap.add(arr[i]);
6    }
7    for (int i = 0; i < 3; i++) {
8        res[i] = heap.poll();
9    }
10    return res;
11}
12
1class HeapItem {
2    constructor(item, priority = item) {
3        this.item = item;
4        this.priority = priority;
5    }
6}
7
8class MinHeap {
9    constructor() {
10        this.heap = [];
11    }
12
13    push(node) {
14        // insert the new node at the end of the heap array
15        this.heap.push(node);
16        // find the correct position for the new node
17        this.bubble_up();
18    }
19
20    bubble_up() {
21        let index = this.heap.length - 1;
22
23        while (index > 0) {
24            const element = this.heap[index];
25            const parentIndex = Math.floor((index - 1) / 2);
26            const parent = this.heap[parentIndex];
27
28            if (parent.priority <= element.priority) break;
29            // if the parent is bigger than the child then swap the parent and child
30            this.heap[index] = parent;
31            this.heap[parentIndex] = element;
32            index = parentIndex;
33        }
34    }
35
36    pop() {
37        const min = this.heap[0];
38        this.heap[0] = this.heap[this.size() - 1];
39        this.heap.pop();
40        this.bubble_down();
41        return min;
42    }
43
44    bubble_down() {
45        let index = 0;
46        let min = index;
47        const n = this.heap.length;
48
49        while (index < n) {
50            const left = 2 * index + 1;
51            const right = left + 1;
52
53            if (left < n && this.heap[left].priority < this.heap[min].priority) {
54                min = left;
55            }
56            if (right < n && this.heap[right].priority < this.heap[min].priority) {
57                min = right;
58            }
59            if (min === index) break;
60            [this.heap[min], this.heap[index]] = [this.heap[index], this.heap[min]];
61            index = min;
62        }
63    }
64
65    peek() {
66        return this.heap[0];
67    }
68
69    size() {
70        return this.heap.length;
71    }
72}
73
74function fun(arr) {
75    const heap = new MinHeap();
76    for (const x of arr) {
77        heap.push(new HeapItem(x));
78    }
79    const res = [];
80    for (let i = 0; i < 3; i++) {
81        res.push(heap.pop().item);
82    }
83    return res;
84}
85

Recommended Readings

Want a Structured Path to Master System Design Too? Don’t Miss This!


Load More