My Calendar I
You are implementing a program to use as your calendar. We can add a new event if adding the event will not cause a double booking.
A double booking happens when two events have some non-empty intersection (i.e., some moment is common to both events.).
The event can be represented as a pair of integers start and end that represents a booking on the half-open interval [start, end), the range of real numbers x such that start <= x < end.
Implement the MyCalendar class:
MyCalendar()Initializes the calendar object.boolean book(int start, int end)Returnstrueif the event can be added to the calendar successfully without causing a double booking. Otherwise, returnfalseand do not add the event to the calendar.
Example 1:
Input ["MyCalendar", "book", "book", "book"] [[], [10, 20], [15, 25], [20, 30]] Output [null, true, false, true]
Explanation
MyCalendar myCalendar = new MyCalendar();
myCalendar.book(10, 20); // return True
myCalendar.book(15, 25); // return False, It can not be booked because time 15 is already booked by another event.
myCalendar.book(20, 30); // return True, The event can be booked, as the first event takes every time less than 20, but not including 20.
Constraints:
0 <= start < end <= 109- At most
1000calls will be made tobook.
Solution
To implement the booking behaviour, we will use binary search to find a potential insertion index, then check whether the new booking can be
actually scheduled into our calendar by checking whether the new booking overlaps with calendar[idx-1] and calendar[idx].
Implementation
class MyCalendar:
def __init__(self):
self.calendar = []
def book(self, start: int, end: int) -> bool:
left, right, idx = 0, len(self.calendar)-1, len(self.calendar)
while left <= right:
mid = (left + right) // 2
if self.calendar[mid][0] > start:
idx = mid
right = mid - 1
else:
left = mid + 1
# check if calendar[idx-1] or calendar[idx] overlaps with start and end
if (idx > 0 and self.calendar[idx-1][1] > start) or (idx < len(self.calendar) and self.calendar[idx][0] < end):
return False
self.calendar.insert(idx, (start, end))
return True
Intuition
We want to store the bookings in a sorted array called calendar, each booking is represented by the pair (start, end) indicating its start and end time.
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorWhat's the output of running the following function using input [30, 20, 10, 100, 33, 12]?
1def fun(arr: List[int]) -> List[int]:
2 import heapq
3 heapq.heapify(arr)
4 res = []
5 for i in range(3):
6 res.append(heapq.heappop(arr))
7 return res
81public static int[] fun(int[] arr) {
2 int[] res = new int[3];
3 PriorityQueue<Integer> heap = new PriorityQueue<>();
4 for (int i = 0; i < arr.length; i++) {
5 heap.add(arr[i]);
6 }
7 for (int i = 0; i < 3; i++) {
8 res[i] = heap.poll();
9 }
10 return res;
11}
121class HeapItem {
2 constructor(item, priority = item) {
3 this.item = item;
4 this.priority = priority;
5 }
6}
7
8class MinHeap {
9 constructor() {
10 this.heap = [];
11 }
12
13 push(node) {
14 // insert the new node at the end of the heap array
15 this.heap.push(node);
16 // find the correct position for the new node
17 this.bubble_up();
18 }
19
20 bubble_up() {
21 let index = this.heap.length - 1;
22
23 while (index > 0) {
24 const element = this.heap[index];
25 const parentIndex = Math.floor((index - 1) / 2);
26 const parent = this.heap[parentIndex];
27
28 if (parent.priority <= element.priority) break;
29 // if the parent is bigger than the child then swap the parent and child
30 this.heap[index] = parent;
31 this.heap[parentIndex] = element;
32 index = parentIndex;
33 }
34 }
35
36 pop() {
37 const min = this.heap[0];
38 this.heap[0] = this.heap[this.size() - 1];
39 this.heap.pop();
40 this.bubble_down();
41 return min;
42 }
43
44 bubble_down() {
45 let index = 0;
46 let min = index;
47 const n = this.heap.length;
48
49 while (index < n) {
50 const left = 2 * index + 1;
51 const right = left + 1;
52
53 if (left < n && this.heap[left].priority < this.heap[min].priority) {
54 min = left;
55 }
56 if (right < n && this.heap[right].priority < this.heap[min].priority) {
57 min = right;
58 }
59 if (min === index) break;
60 [this.heap[min], this.heap[index]] = [this.heap[index], this.heap[min]];
61 index = min;
62 }
63 }
64
65 peek() {
66 return this.heap[0];
67 }
68
69 size() {
70 return this.heap.length;
71 }
72}
73
74function fun(arr) {
75 const heap = new MinHeap();
76 for (const x of arr) {
77 heap.push(new HeapItem(x));
78 }
79 const res = [];
80 for (let i = 0; i < 3; i++) {
81 res.push(heap.pop().item);
82 }
83 return res;
84}
85Recommended Readings
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion If you prefer videos here's a video that explains recursion in a fun and easy way Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https assets algo monster recursion jpg You first call Ben and ask him
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!