2813. Maximum Elegance of a K-Length Subsequence
Problem Description
You are given a 2D integer array items
where each element items[i] = [profit_i, category_i]
represents an item with its profit and category. You need to select exactly k
items to form a subsequence.
The elegance of a subsequence is calculated as: total_profit + distinct_categories²
Where:
total_profit
is the sum of all profits in the selected subsequencedistinct_categories
is the number of unique categories among the selected items
Your task is to find the maximum possible elegance by selecting exactly k
items from the array.
For example, if you select items with profits [5, 3, 2] and categories [1, 1, 2], then:
total_profit = 5 + 3 + 2 = 10
distinct_categories = 2
(categories 1 and 2)elegance = 10 + 2² = 14
The key insight is that there's a trade-off between maximizing total profit and maximizing the number of distinct categories (since the latter is squared in the formula). Sometimes it's better to choose an item with lower profit if it adds a new category, as the squared term can significantly boost the elegance score.
A subsequence maintains the relative order of elements from the original array but doesn't need to be contiguous. You must select exactly k
items to form your subsequence and return the maximum elegance achievable.
Intuition
The formula total_profit + distinct_categories²
creates an interesting optimization problem. Since we want to maximize this value, we need to balance between high profits and category diversity.
Let's think greedily: we should start by taking the k
items with the highest profits. This gives us the maximum possible total_profit
initially. However, this might not be optimal because we haven't considered the squared term for distinct categories.
The key observation is that once we have our initial k
items, we can potentially improve the elegance by swapping items. When should we make a swap?
Consider replacing an item from our selected k
items with an item outside. This swap makes sense only if:
- The new item introduces a new category (increasing
distinct_categories
by 1) - The item we remove is from a duplicate category (so we don't lose any distinct categories)
When we add a new category, the elegance changes by:
- Profit change:
new_profit - old_profit
(likely negative since we sorted by profit) - Category bonus:
(distinct_categories + 1)² - distinct_categories²
=2 * distinct_categories + 1
The quadratic term means that adding new categories becomes increasingly valuable as we have more distinct categories. This could outweigh the profit loss from swapping.
To implement this efficiently:
- Sort items by profit (descending) and take the top
k
items - Track which items in our selection have duplicate categories - these are candidates for removal
- For remaining items (ranked
k+1
onwards), if they bring a new category, consider swapping them with the lowest-profit duplicate-category item - Keep track of the maximum elegance throughout this process
We only swap with the minimum profit among duplicates because that minimizes our profit loss while gaining the category diversity bonus. This greedy strategy of always removing the least profitable duplicate ensures we explore the best possible trade-offs between profit and category diversity.
Learn more about Stack, Greedy, Sorting and Heap (Priority Queue) patterns.
Solution Approach
Following our greedy intuition, here's how we implement the solution:
Step 1: Sort and Initial Selection
items.sort(key=lambda x: -x[0])
Sort all items by profit in descending order. This ensures we start with the highest profit items.
Step 2: Select Top k Items
tot = 0
vis = set()
dup = []
for p, c in items[:k]:
tot += p
if c not in vis:
vis.add(c)
else:
dup.append(p)
- Take the first
k
items and calculate their total profit intot
- Use a set
vis
to track which categories we've seen - Use a list
dup
to store profits of items that have duplicate categories - When we encounter a duplicate category, we add its profit to
dup
(these are candidates for replacement)
Step 3: Calculate Initial Elegance
ans = tot + len(vis) ** 2
Calculate the elegance with our initial selection: total profit plus the square of distinct categories.
Step 4: Consider Swapping
for p, c in items[k:]:
if c in vis or not dup:
continue
vis.add(c)
tot += p - dup.pop()
ans = max(ans, tot + len(vis) ** 2)
For each remaining item (ranked k+1
onwards):
- Skip if its category is already in
vis
(no new category to add) - Skip if
dup
is empty (no duplicate items to replace) - Otherwise, this item brings a new category, so:
- Add the new category to
vis
- Replace the highest-profit duplicate with this item:
tot += p - dup.pop()
- Note:
dup.pop()
removes the last element, which is the highest profit among duplicates since we added them in order - Update
ans
with the new elegance
- Add the new category to
Why This Works:
- We always maintain exactly
k
items in our selection - We only swap when we can add a new category (increasing
distinct_categories
) - We swap out the most expensive duplicate (last in
dup
), minimizing profit loss - The algorithm explores all beneficial trades between profit and category diversity
Time Complexity: O(n log n)
for sorting, where n
is the number of items
Space Complexity: O(k)
for storing the selected items' information
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a concrete example to illustrate the solution approach.
Given: items = [[5,1], [4,1], [3,2], [2,3], [1,1]]
, k = 3
Step 1: Sort by profit (descending)
After sorting: items = [[5,1], [4,1], [3,2], [2,3], [1,1]]
(already sorted in this case)
Step 2: Select top k=3 items
We take the first 3 items: [[5,1], [4,1], [3,2]]
-
Process
[5,1]
: profit=5, category=1tot = 5
vis = {1}
(new category)dup = []
(first occurrence of category 1)
-
Process
[4,1]
: profit=4, category=1tot = 5 + 4 = 9
vis = {1}
(category 1 already exists)dup = [4]
(duplicate category, add profit to dup list)
-
Process
[3,2]
: profit=3, category=2tot = 9 + 3 = 12
vis = {1, 2}
(new category)dup = [4]
(not a duplicate)
Step 3: Calculate initial elegance
elegance = tot + len(vis)² = 12 + 2² = 16
ans = 16
Step 4: Consider swapping with remaining items
-
Consider
[2,3]
(profit=2, category=3):- Category 3 is NOT in
vis = {1, 2}
✓ dup = [4]
is not empty ✓- We can swap!
- Add category 3:
vis = {1, 2, 3}
- Update profit:
tot = 12 + 2 - 4 = 10
(add new item's profit, remove duplicate's profit) - New elegance:
10 + 3² = 19
- Update
ans = max(16, 19) = 19
dup
is now empty
- Category 3 is NOT in
-
Consider
[1,1]
(profit=1, category=1):- Category 1 is already in
vis = {1, 2, 3}
✗ - Skip this item
- Category 1 is already in
Final Answer: Maximum elegance = 19
The key insight: We initially selected [[5,1], [4,1], [3,2]]
with elegance 16. By swapping [4,1]
(a duplicate category item) with [2,3]
(introduces new category 3), we sacrificed 2 profit points but gained 3² - 2² = 5
points from the category bonus, resulting in a net gain of 3 points for a final elegance of 19.
Solution Implementation
1class Solution:
2 def findMaximumElegance(self, items: List[List[int]], k: int) -> int:
3 # Sort items by profit in descending order
4 items.sort(key=lambda x: -x[0])
5
6 # Initialize total profit and tracking variables
7 total_profit = 0
8 visited_categories = set()
9 duplicate_profits = [] # Stack to store profits of duplicate category items
10
11 # Process the top k items with highest profits
12 for profit, category in items[:k]:
13 total_profit += profit
14 if category not in visited_categories:
15 # First time seeing this category
16 visited_categories.add(category)
17 else:
18 # Duplicate category item - store its profit for potential replacement
19 duplicate_profits.append(profit)
20
21 # Calculate initial elegance (total_profit + distinct_categories^2)
22 max_elegance = total_profit + len(visited_categories) ** 2
23
24 # Try to improve elegance by replacing duplicate items with new categories
25 for profit, category in items[k:]:
26 # Skip if category already seen or no duplicates to replace
27 if category in visited_categories or not duplicate_profits:
28 continue
29
30 # Add new category and replace the smallest duplicate profit
31 visited_categories.add(category)
32 total_profit += profit - duplicate_profits.pop() # Replace smallest duplicate
33
34 # Update maximum elegance if current combination is better
35 max_elegance = max(max_elegance, total_profit + len(visited_categories) ** 2)
36
37 return max_elegance
38
1class Solution {
2 public long findMaximumElegance(int[][] items, int k) {
3 // Sort items by profit in descending order
4 Arrays.sort(items, (a, b) -> b[0] - a[0]);
5
6 int n = items.length;
7 long totalProfit = 0;
8
9 // Track unique categories we've seen
10 Set<Integer> uniqueCategories = new HashSet<>();
11
12 // Stack to store profits of duplicate category items (for potential replacement)
13 Deque<Integer> duplicateProfits = new ArrayDeque<>();
14
15 // First, select the k items with highest profit
16 for (int i = 0; i < k; i++) {
17 int profit = items[i][0];
18 int category = items[i][1];
19
20 totalProfit += profit;
21
22 // If category already exists, this is a duplicate
23 // Store its profit for potential replacement later
24 if (!uniqueCategories.add(category)) {
25 duplicateProfits.push(profit);
26 }
27 }
28
29 // Calculate initial elegance: total_profit + distinct_categories^2
30 long maxElegance = totalProfit + (long) uniqueCategories.size() * uniqueCategories.size();
31
32 // Try to improve elegance by replacing duplicate items with new categories
33 for (int i = k; i < n; i++) {
34 int profit = items[i][0];
35 int category = items[i][1];
36
37 // Skip if:
38 // 1. Category already exists (won't increase distinct categories)
39 // 2. No duplicates to replace (can't make room for new item)
40 if (uniqueCategories.contains(category) || duplicateProfits.isEmpty()) {
41 continue;
42 }
43
44 // Add new category
45 uniqueCategories.add(category);
46
47 // Replace the duplicate item with lowest profit (top of stack)
48 totalProfit += profit - duplicateProfits.pop();
49
50 // Update maximum elegance
51 maxElegance = Math.max(maxElegance,
52 totalProfit + (long) uniqueCategories.size() * uniqueCategories.size());
53 }
54
55 return maxElegance;
56 }
57}
58
1class Solution {
2public:
3 long long findMaximumElegance(vector<vector<int>>& items, int k) {
4 // Sort items by profit in descending order
5 sort(items.begin(), items.end(), [](const vector<int>& a, const vector<int>& b) {
6 return a[0] > b[0];
7 });
8
9 // Initialize total profit sum
10 long long totalProfit = 0;
11
12 // Set to track unique categories we've seen
13 unordered_set<int> uniqueCategories;
14
15 // Stack to store profits of duplicate category items (candidates for replacement)
16 stack<int> duplicateProfits;
17
18 // Process the first k items (initial selection)
19 for (int i = 0; i < k; ++i) {
20 int profit = items[i][0];
21 int category = items[i][1];
22
23 totalProfit += profit;
24
25 if (uniqueCategories.count(category)) {
26 // If category already exists, this item is a duplicate
27 duplicateProfits.push(profit);
28 } else {
29 // New category found
30 uniqueCategories.insert(category);
31 }
32 }
33
34 int totalItems = items.size();
35
36 // Calculate initial elegance: total_profit + distinct_categories^2
37 long long maxElegance = totalProfit + 1LL * uniqueCategories.size() * uniqueCategories.size();
38
39 // Try to improve elegance by replacing duplicate items with new categories
40 for (int i = k; i < totalItems; ++i) {
41 int profit = items[i][0];
42 int category = items[i][1];
43
44 // Skip if:
45 // 1. Category already exists (won't increase distinct categories)
46 // 2. No duplicates to replace (can't make a valid swap)
47 if (uniqueCategories.count(category) || duplicateProfits.empty()) {
48 continue;
49 }
50
51 // Add new category
52 uniqueCategories.insert(category);
53
54 // Replace the smallest duplicate profit with current item's profit
55 totalProfit += profit - duplicateProfits.top();
56 duplicateProfits.pop();
57
58 // Update maximum elegance if current configuration is better
59 maxElegance = max(maxElegance, totalProfit + 1LL * uniqueCategories.size() * uniqueCategories.size());
60 }
61
62 return maxElegance;
63 }
64};
65
1/**
2 * Finds the maximum elegance by selecting k items from the given list.
3 * Elegance is calculated as: total profit + (number of distinct categories)²
4 *
5 * @param items - Array of items where each item is [profit, category]
6 * @param k - Number of items to select
7 * @returns Maximum possible elegance value
8 */
9function findMaximumElegance(items: number[][], k: number): number {
10 // Sort items by profit in descending order
11 items.sort((a, b) => b[0] - a[0]);
12
13 // Initialize total profit
14 let totalProfit: number = 0;
15
16 // Track visited categories
17 const visitedCategories: Set<number> = new Set<number>();
18
19 // Store profits of duplicate category items (for potential replacement)
20 const duplicateProfits: number[] = [];
21
22 // Process the top k items with highest profits
23 for (const [profit, category] of items.slice(0, k)) {
24 totalProfit += profit;
25
26 if (visitedCategories.has(category)) {
27 // If category already exists, this is a duplicate
28 duplicateProfits.push(profit);
29 } else {
30 // First item of this category
31 visitedCategories.add(category);
32 }
33 }
34
35 // Calculate initial elegance with selected k items
36 let maxElegance: number = totalProfit + visitedCategories.size ** 2;
37
38 // Try to replace duplicates with items from remaining list to increase category diversity
39 for (const [profit, category] of items.slice(k)) {
40 // Skip if category already exists or no duplicates to replace
41 if (visitedCategories.has(category) || duplicateProfits.length === 0) {
42 continue;
43 }
44
45 // Replace the smallest duplicate profit with current item
46 // This increases category count while minimizing profit loss
47 totalProfit += profit - duplicateProfits.pop()!;
48 visitedCategories.add(category);
49
50 // Update maximum elegance if current configuration is better
51 maxElegance = Math.max(maxElegance, totalProfit + visitedCategories.size ** 2);
52 }
53
54 return maxElegance;
55}
56
Time and Space Complexity
Time Complexity: O(n × log n)
The dominant operation in this algorithm is the sorting of the items list at the beginning with items.sort(key=lambda x: -x[0])
, which takes O(n × log n)
time where n
is the total number of items.
After sorting:
- The first loop iterates through the first
k
items, takingO(k)
time - The second loop iterates through the remaining
n - k
items in the worst case, takingO(n - k)
time - All operations inside both loops (set operations like
add
,in
, list operations likeappend
,pop
) takeO(1)
time
Since k ≤ n
, the total time after sorting is O(k) + O(n - k) = O(n)
.
Therefore, the overall time complexity is O(n × log n) + O(n) = O(n × log n)
.
Space Complexity: O(n)
The algorithm uses the following additional space:
vis
: A set that can contain at mostn
unique category values in the worst case, requiringO(n)
spacedup
: A list that can contain at mostk
duplicate profit values, requiringO(k)
space wherek ≤ n
- A few scalar variables (
tot
,ans
,p
,c
) requiringO(1)
space
The total auxiliary space complexity is O(n) + O(k) + O(1) = O(n)
since k ≤ n
.
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrectly Managing the Duplicate Stack Order
The Pitfall:
The most critical mistake is misunderstanding which duplicate item to replace. The code stores duplicate profits in the order they appear (highest to lowest due to initial sorting), but pop()
removes the last element. Many developers mistakenly think they're removing the smallest profit duplicate, when they're actually removing the largest.
Why This Happens:
- Items are sorted by profit descending:
[10, 8, 6, 4, ...]
- Duplicates are added in this order:
dup = [8, 6]
(if 8 and 6 are duplicates) dup.pop()
removes 6, not 8!
The Problem: If you want to minimize profit loss when swapping, you should replace the smallest profit duplicate, not the largest. Removing the wrong item leads to suboptimal elegance scores.
Solution:
# Option 1: Use a min-heap to always pop the smallest import heapq duplicate_profits = [] # Will be used as min-heap # When adding duplicates: heapq.heappush(duplicate_profits, profit) # When replacing: total_profit += profit - heapq.heappop(duplicate_profits) # Removes smallest # Option 2: Reverse the duplicate list before popping duplicate_profits.append(profit) # Later, before the swapping loop: duplicate_profits.reverse() # Now pop() removes the smallest
2. Not Checking if Duplicates List is Empty
The Pitfall:
Forgetting to check if not duplicate_profits
before attempting to pop can cause an IndexError when trying to pop from an empty list.
Example Scenario:
- All initial k items have distinct categories
duplicate_profits
remains empty- Attempting
duplicate_profits.pop()
crashes the program
Solution: Always check both conditions together:
if category in visited_categories or not duplicate_profits: continue
3. Modifying the Wrong Total When Swapping
The Pitfall: Some developers create a new variable for tracking profit during swaps but forget to update it consistently, or they update the original total but compare against a stale maximum.
Incorrect Example:
# Wrong: Creating new variable but not maintaining it properly
swap_total = total_profit
for profit, category in items[k:]:
if category not in visited_categories and duplicate_profits:
swap_total = total_profit + profit - duplicate_profits.pop() # Bug: always uses original total_profit
max_elegance = max(max_elegance, swap_total + len(visited_categories) ** 2)
Solution:
Consistently update the same total_profit
variable:
total_profit += profit - duplicate_profits.pop() # Accumulative update
What's the output of running the following function using input 56
?
1KEYBOARD = {
2 '2': 'abc',
3 '3': 'def',
4 '4': 'ghi',
5 '5': 'jkl',
6 '6': 'mno',
7 '7': 'pqrs',
8 '8': 'tuv',
9 '9': 'wxyz',
10}
11
12def letter_combinations_of_phone_number(digits):
13 def dfs(path, res):
14 if len(path) == len(digits):
15 res.append(''.join(path))
16 return
17
18 next_number = digits[len(path)]
19 for letter in KEYBOARD[next_number]:
20 path.append(letter)
21 dfs(path, res)
22 path.pop()
23
24 res = []
25 dfs([], res)
26 return res
27
1private static final Map<Character, char[]> KEYBOARD = Map.of(
2 '2', "abc".toCharArray(),
3 '3', "def".toCharArray(),
4 '4', "ghi".toCharArray(),
5 '5', "jkl".toCharArray(),
6 '6', "mno".toCharArray(),
7 '7', "pqrs".toCharArray(),
8 '8', "tuv".toCharArray(),
9 '9', "wxyz".toCharArray()
10);
11
12public static List<String> letterCombinationsOfPhoneNumber(String digits) {
13 List<String> res = new ArrayList<>();
14 dfs(new StringBuilder(), res, digits.toCharArray());
15 return res;
16}
17
18private static void dfs(StringBuilder path, List<String> res, char[] digits) {
19 if (path.length() == digits.length) {
20 res.add(path.toString());
21 return;
22 }
23 char next_digit = digits[path.length()];
24 for (char letter : KEYBOARD.get(next_digit)) {
25 path.append(letter);
26 dfs(path, res, digits);
27 path.deleteCharAt(path.length() - 1);
28 }
29}
30
1const KEYBOARD = {
2 '2': 'abc',
3 '3': 'def',
4 '4': 'ghi',
5 '5': 'jkl',
6 '6': 'mno',
7 '7': 'pqrs',
8 '8': 'tuv',
9 '9': 'wxyz',
10}
11
12function letter_combinations_of_phone_number(digits) {
13 let res = [];
14 dfs(digits, [], res);
15 return res;
16}
17
18function dfs(digits, path, res) {
19 if (path.length === digits.length) {
20 res.push(path.join(''));
21 return;
22 }
23 let next_number = digits.charAt(path.length);
24 for (let letter of KEYBOARD[next_number]) {
25 path.push(letter);
26 dfs(digits, path, res);
27 path.pop();
28 }
29}
30
Recommended Readings
Stack Intro Imagine you have a pile of books on your desk If you want to add a new book you place it on top If you want to read a book you take it from the top And if you simply want to see which book is on the top you
Greedy Introduction div class responsive iframe iframe src https www youtube com embed WTslqPbj7I title YouTube video player frameborder 0 allow accelerometer autoplay clipboard write encrypted media gyroscope picture in picture web share allowfullscreen iframe div When do we use greedy Greedy algorithms tend to solve optimization problems Typically they will ask you to calculate the max min of some value Commonly you may see this phrased in the problem as max min longest shortest largest smallest etc These keywords can be identified by just scanning
Sorting Summary Comparisons We presented quite a few sorting algorithms and it is essential to know the advantages and disadvantages of each one The basic algorithms are easy to visualize and easy to learn for beginner programmers because of their simplicity As such they will suffice if you don't know any advanced
Want a Structured Path to Master System Design Too? Don’t Miss This!