Word Break II

Given a string s and a dictionary of strings wordDict, add spaces in s to construct a sentence where each word is a valid dictionary word. Return all such possible sentences in any order.

Note that the same word in the dictionary may be reused multiple times in the segmentation.

Example 1:

Input: s = "catsanddog", wordDict = ["cat","cats","and","sand","dog"]

Output: ["cats and dog","cat sand dog"]

Example 2:

Input: s = "pineapplepenapple", wordDict = ["apple","pen","applepen","pine","pineapple"]

Output: ["pine apple pen apple","pineapple pen apple","pine applepen apple"]

Explanation: Note that you are allowed to reuse a dictionary word.

Example 3:

Input: s = "catsandog", wordDict = ["cats","dog","sand","and","cat"]

Output: []

Constraints:

  • 1 <= s.length <= 20
  • 1 <= wordDict.length <= 1000
  • 1 <= wordDict[i].length <= 10
  • s and wordDict[i] consist of only lowercase English letters.
  • All the strings of wordDict are unique.

Solution

We can apply the backtracking1 template to solve this problem. Fill in the logic.

  • is_leaf: start_index == len(s), when all the letters are used.
  • get_edges: w = s[start_index:end_index+1] where start_index <= end_index < len(s), are the possible words starting at start_index.
  • is_valid: is w in wordDict? w is valid if it's in the dictionary.

Implementation

1def wordBreak(self, s: str, wordDict: List[str]) -> List[str]:
2    def dfs(start_index, path):
3        if start_index == len(s):
4            ans.append(" ".join(path))
5            return
6        for end_index in range(start_index, len(s)):
7            w = s[start_index:end_index+1]
8            if w in wordDict:
9                path.append(w)
10                dfs(end_index+1, path)
11                path.pop()
12    ans = []
13    dfs(0, [])
14    return ans

Not Sure What to Study? Take the 2-min Quiz to Find Your Missing Piece:

Given a sorted array of integers and an integer called target, find the element that equals to the target and return its index. Select the correct code that fills the ___ in the given code snippet.

1def binary_search(arr, target):
2    left, right = 0, len(arr) - 1
3    while left ___ right:
4        mid = (left + right) // 2
5        if arr[mid] == target:
6            return mid
7        if arr[mid] < target:
8            ___ = mid + 1
9        else:
10            ___ = mid - 1
11    return -1
12
1public static int binarySearch(int[] arr, int target) {
2    int left = 0;
3    int right = arr.length - 1;
4
5    while (left ___ right) {
6        int mid = left + (right - left) / 2;
7        if (arr[mid] == target) return mid;
8        if (arr[mid] < target) {
9            ___ = mid + 1;
10        } else {
11            ___ = mid - 1;
12        }
13    }
14    return -1;
15}
16
1function binarySearch(arr, target) {
2    let left = 0;
3    let right = arr.length - 1;
4
5    while (left ___ right) {
6        let mid = left + Math.trunc((right - left) / 2);
7        if (arr[mid] == target) return mid;
8        if (arr[mid] < target) {
9            ___ = mid + 1;
10        } else {
11            ___ = mid - 1;
12        }
13    }
14    return -1;
15}
16
Discover Your Strengths and Weaknesses: Take Our 2-Minute Quiz to Tailor Your Study Plan:

Which data structure is used in a depth first search?

Not Sure What to Study? Take the 2-min Quiz:

What is the worst case running time for finding an element in a binary search tree(not necessarily balanced) of size n?

Fast Track Your Learning with Our Quick Skills Quiz:

Which of these pictures shows the visit order of a depth-first search?


Recommended Readings


Got a question? Ask the Teaching Assistant anything you don't understand.

Still not clear? Ask in the Forum,  Discord or Submit the part you don't understand to our editors.


TA 👨‍🏫