Word Break II
Given a string s and a dictionary of strings wordDict, add spaces in s to construct a sentence where each word is a valid dictionary word. Return all such possible sentences in any order.
Note that the same word in the dictionary may be reused multiple times in the segmentation.
Example 1:
Input: s = "catsanddog", wordDict = ["cat","cats","and","sand","dog"]
Output: ["cats and dog","cat sand dog"]
Example 2:
Input: s = "pineapplepenapple", wordDict = ["apple","pen","applepen","pine","pineapple"]
Output: ["pine apple pen apple","pineapple pen apple","pine applepen apple"]
Explanation: Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats","dog","sand","and","cat"]
Output: []
Constraints:
1 <= s.length <= 201 <= wordDict.length <= 10001 <= wordDict[i].length <= 10sandwordDict[i]consist of only lowercase English letters.- All the strings of
wordDictare unique.
Solution
We can apply the backtracking1 template to solve this problem. Fill in the logic.
is_leaf:start_index == len(s), when all the letters are used.get_edges:w = s[start_index:end_index+1]wherestart_index <= end_index < len(s), are the possible words starting atstart_index.is_valid: isw in wordDict?wis valid if it's in the dictionary.
Implementation
def wordBreak(self, s: str, wordDict: List[str]) -> List[str]:
def dfs(start_index, path):
if start_index == len(s):
ans.append(" ".join(path))
return
for end_index in range(start_index, len(s)):
w = s[start_index:end_index+1]
if w in wordDict:
path.append(w)
dfs(end_index+1, path)
path.pop()
ans = []
dfs(0, [])
return ans

Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorWhat's the output of running the following function using the following tree as input?

1def serialize(root):
2 res = []
3 def dfs(root):
4 if not root:
5 res.append('x')
6 return
7 res.append(root.val)
8 dfs(root.left)
9 dfs(root.right)
10 dfs(root)
11 return ' '.join(res)
121import java.util.StringJoiner;
2
3public static String serialize(Node root) {
4 StringJoiner res = new StringJoiner(" ");
5 serializeDFS(root, res);
6 return res.toString();
7}
8
9private static void serializeDFS(Node root, StringJoiner result) {
10 if (root == null) {
11 result.add("x");
12 return;
13 }
14 result.add(Integer.toString(root.val));
15 serializeDFS(root.left, result);
16 serializeDFS(root.right, result);
17}
181function serialize(root) {
2 let res = [];
3 serialize_dfs(root, res);
4 return res.join(" ");
5}
6
7function serialize_dfs(root, res) {
8 if (!root) {
9 res.push("x");
10 return;
11 }
12 res.push(root.val);
13 serialize_dfs(root.left, res);
14 serialize_dfs(root.right, res);
15}
16Recommended Readings
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion If you prefer videos here's a video that explains recursion in a fun and easy way Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https assets algo monster recursion jpg You first call Ben and ask him
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!