Leetcode 1850. Minimum Adjacent Swaps to Reach the Kth Smallest Number

Problem Explanation

In this problem, we are given a string num that represents a large integer, and an integer k. The task is to find the minimum number of adjacent digit swaps that needs to be applied to num to reach the kth smallest wonderful integer. A wonderful integer is an integer that is a permutation of the digits in num and is greater in value than num.

Approach

The solution follows this approach:

  1. Generate the kth smallest wonderful integer using a permutation algorithm such as next_permutation.
  2. Count the minimum number of adjacent digit swaps needed to transform the original string into the generated permutation.

Let's walk through an example.

Example

1num = "5489355142"
2k = 4
  1. We will first find the kth smallest wonderful integer using next_permutation.

    • After 1st permutation: "5489355214"
    • After 2nd permutation: "5489355241"
    • After 3rd permutation: "5489355412"
    • After 4th permutation: "5489355421"

    So, the 4th smallest wonderful integer is "5489355421".

  2. Now, we will count the minimum number of adjacent digit swaps needed.

    1. Swap index 7 with index 8: "5489355142" -> "5489355412"
    2. Swap index 8 with index 9: "5489355412" -> "5489355421"

    The total number of swaps required is 2.

Now, let's implement the solution in different languages.

Solution in Python

1from itertools import permutations
2
3class Solution:
4    def getMinSwaps(self, num: str, k: int) -> int:
5        perm = num
6
7        for _ in range(k):
8            perm = self.next_permutation(perm)
9        
10        return self.count_steps(num, perm)
11
12    def count_steps(self, A: str, B: list) -> int:
13        count = 0
14
15        for i in range(len(A)):
16            j = i
17            while A[i] != B[j]:
18                j += 1
19            while i < j:
20                B[j], B[j - 1] = B[j - 1], B[j]
21                j -= 1
22                count += 1
23
24        return count
25
26    def next_permutation(self, s: str) -> list:
27        s = list(s)
28        n = len(s)
29        i = n - 1
30        while i > 0 and s[i - 1] >= s[i]:
31            i -= 1
32
33        j = n - 1
34        while i > 0 and s[i - 1] >= s[j]:
35            j -= 1
36        s[i - 1], s[j] = s[j], s[i - 1]
37        s[i:] = reversed(s[i:])
38
39        return s

Solution in Java

1import java.util.*;
2
3class Solution {
4    public int getMinSwaps(String num, int k) {
5        List<Character> perm = new ArrayList<>();
6
7        for (char ch : num.toCharArray())
8            perm.add(ch);
9
10        for (int i = 0; i < k; ++i)
11            nextPermutation(perm);
12
13        return countSteps(num, perm);
14    }
15
16    private int countSteps(String A, List<Character> B) {
17        int count = 0;
18
19        for (int i = 0, j = 0; i < A.length(); ++i) {
20            j = i;
21            while (A.charAt(i) != B.get(j))
22                ++j;
23
24            while (i < j) {
25                Collections.swap(B, j, j - 1);
26                --j;
27                ++count;
28            }
29        }
30        return count;
31    }
32
33    private void nextPermutation(List<Character> perm) {
34        int i = perm.size() - 1;
35
36        while (i > 0 && perm.get(i - 1) >= perm.get(i))
37            --i;
38
39        int j = perm.size() - 1;
40        while (i > 0 && perm.get(i - 1) >= perm.get(j))
41            --j;
42
43        Collections.swap(perm, i - 1, j);
44        Collections.reverse(perm.subList(i, perm.size()));
45    }
46}

Solution in C++

1#include <algorithm>
2#include <string>
3#include <vector>
4
5class Solution {
6 public:
7  int getMinSwaps(std::string num, int k) {
8    std::string perm = num;
9
10    while (k--)
11      std::next_permutation(begin(perm), end(perm));
12
13    return countSteps(num, perm);
14  }
15
16 private:
17  int countSteps(const std::string &A, std::string &B) {
18    int count = 0;
19
20    for (size_t i = 0, j = 0; i < A.length(); ++i) {
21      j = i;
22      while (A[i] != B[j])
23        ++j;
24
25      while (i < j) {
26        std::swap(B[j], B[j - 1]);
27        --j;
28        ++count;
29      }
30    }
31    return count;
32  }
33};

Solution in C#

1using System;
2using System.Collections.Generic;
3
4public class Solution {
5    public int GetMinSwaps(string num, int k) {
6        List<char> perm = new List<char>(num);
7
8        for (int i = 0; i < k; ++i)
9            NextPermutation(perm);
10
11        return CountSteps(num, perm);
12    }
13
14    private int CountSteps(string A, IList<char> B) {
15        int count = 0;
16
17        for (int i = 0, j = 0; i < A.Length; ++i) {
18            j = i;
19            while (A[i] != B[j])
20                ++j;
21
22            while (i < j) {
23                Swap(B, j, j - 1);
24                --j;
25                ++count;
26            }
27        }
28
29        return count;
30    }
31
32    private void NextPermutation(IList<char> perm) {
33        int i = perm.Count - 1;
34
35        while (i > 0 && perm[i - 1] >= perm[i])
36            --i;
37
38        int j = perm.Count - 1;
39        while (i > 0 && perm[i - 1] >= perm[j])
40            --j;
41
42        Swap(perm, i - 1, j);
43        Reverse(perm, i, perm.Count);
44    }
45
46    private void Swap(IList<char> list, int i, int j) {
47        char tmp = list[i];
48        list[i] = list[j];
49        list[j] = tmp;
50    }
51
52    private void Reverse(IList<char> list, int start, int end) {
53        for (int i = start, j = end - 1; i < j; ++i, --j)
54            Swap(list, i, j);
55    }
56}
57```## JavaScript Implementation
58
59```javascript
60class Solution {
61    getMinSwaps(num, k) {
62        let perm = num.split('');
63
64        for (let i = 0; i < k; i++) {
65            this.nextPermutation(perm);
66        }
67
68        return this.countSteps(num, perm);
69    }
70
71    countSteps(A, B) {
72        let count = 0;
73
74        for (let i = 0; i < A.length; i++) {
75            let j = i;
76            while (A[i] !== B[j]) {
77                j++;
78            }
79            
80            while (i < j) {
81                [B[j], B[j - 1]] = [B[j - 1], B[j]];
82                j--;
83                count++;
84            }
85        }
86
87        return count;
88    }
89
90    nextPermutation(perm) {
91        let i = perm.length - 1;
92
93        while (i > 0 && perm[i - 1] >= perm[i]) {
94            i--;
95        }
96
97        let j = perm.length - 1;
98        while (i > 0 && perm[i - 1] >= perm[j]) {
99            j--;
100        }
101
102        [perm[i - 1], perm[j]] = [perm[j], perm[i - 1]];
103        perm.splice(i, perm.length - i, ...perm.slice(i).reverse());
104    }
105}
106
107let sol = new Solution();
108let num = "5489355142";
109let k = 4;
110console.log(sol.getMinSwaps(num, k));  // Output: 2

The JavaScript implementation follows a similar approach to other languages. We first convert the input string num into an array of characters and then apply the nextPermutation function k times. After that, we count the number of swaps required using the countSteps function. Finally, we return the swap count.


Got a question?ย Ask the Teaching Assistantย anything you don't understand.

Still not clear? Ask in the Forum, ย Discordย orย Submitย the part you don't understand to our editors.

โ†
โ†‘TA ๐Ÿ‘จโ€๐Ÿซ