449. Serialize and Deserialize BST
Problem Description
This problem asks you to design an algorithm to serialize and deserialize a Binary Search Tree (BST).
Serialization means converting a tree data structure into a string representation that can be stored or transmitted. Deserialization means reconstructing the original tree from that string representation.
Key requirements:
- You need to implement two methods:
serialize
anddeserialize
- The
serialize
method takes a BST root node and returns a string - The
deserialize
method takes the string and reconstructs the original BST - The encoded string should be as compact as possible
- There's no restriction on the specific format you choose for serialization
The solution leverages the BST property where left subtree values are less than the root and right subtree values are greater than the root.
Serialization approach:
- Performs a preorder traversal (root, left, right) of the BST
- Stores node values in order, separated by spaces
- Example: For BST with root 2, left child 1, right child 3, it produces
"2 1 3"
Deserialization approach:
- Uses the BST property to reconstruct the tree without storing null markers
- Maintains min/max bounds for valid node values at each position
- Starting with bounds
(-inf, inf)
for the root:- Takes the next value from the serialized string if it's within bounds
- Creates a node with that value
- Recursively builds left subtree with bounds
(min, current_value)
- Recursively builds right subtree with bounds
(current_value, max)
- The bounds ensure nodes are placed correctly according to BST rules
This approach is efficient because it only stores actual node values (no null markers needed), making the serialization compact while still allowing perfect reconstruction of the original BST structure.
Flowchart Walkthrough
First, let's pin down the algorithm using the Flowchart. Here's a step-by-step walkthrough:
Is it a graph?
- Yes: A tree is a special type of graph (specifically, a connected acyclic graph). Binary Search Trees are graph structures with nodes and edges connecting parent nodes to their children.
Is it a tree?
- Yes: The problem explicitly deals with a Binary Search Tree, which is a hierarchical tree data structure where each node has at most two children.
DFS
- Conclusion reached: Since we're working with a tree structure, the flowchart directs us to use DFS (Depth-First Search).
The flowchart correctly identifies that for tree-based problems, DFS is the appropriate algorithm pattern. This makes sense for our serialize and deserialize BST problem because:
-
Serialization requires visiting every node in the tree to record its value - DFS with preorder traversal efficiently visits all nodes while maintaining the structural information needed for BST reconstruction.
-
Deserialization needs to reconstruct the tree by processing nodes in the same order they were serialized - DFS allows us to rebuild the tree recursively, using the BST property (left < root < right) to determine where each node belongs without needing explicit null markers.
Conclusion: The flowchart suggests using a DFS approach for serializing and deserializing the Binary Search Tree, which aligns perfectly with the solution that uses recursive DFS traversal for both operations.
Intuition
The key insight comes from understanding what makes a Binary Search Tree special compared to a regular binary tree. In a BST, for any node, all values in its left subtree are smaller and all values in its right subtree are larger. This property is the foundation of our solution.
When we serialize a regular binary tree, we typically need to include null markers to indicate missing children. Otherwise, during deserialization, we can't distinguish between different tree structures. For example, both a tree with only a left child and a tree with only a right child would serialize to the same sequence without null markers.
However, with a BST, we can be smarter. If we use preorder traversal (visit root, then left subtree, then right subtree) for serialization, we get a special property: the first value is always the root, and we can determine which subsequent values belong to the left or right subtree based on whether they're smaller or larger than the root.
Consider this example: BST with values [5, 3, 7, 2, 6]
in preorder. When deserializing:
5
is the root3
is less than5
, so it goes to the left subtree2
is less than5
and less than3
, so it's3
's left child7
is greater than5
, so it goes to the right subtree6
is greater than5
but less than7
, so it's7
's left child
The brilliant part is using bounds during deserialization. Each position in the tree has valid value ranges:
- The root can be any value:
(-∞, +∞)
- The left child of a node with value
x
must be in range(-∞, x)
- The right child of a node with value
x
must be in range(x, +∞)
By maintaining these bounds as we recursively build the tree, we know exactly when to stop building a subtree (when the next value violates the bounds) and return to build the other subtree. This eliminates the need for null markers entirely, making our serialization as compact as possible - we only store the actual values.
This approach elegantly combines the BST property with DFS traversal to achieve both compact serialization and accurate deserialization without any ambiguity about the tree structure.
Solution Approach
The implementation consists of two main methods: serialize
and deserialize
, both using DFS traversal patterns.
Serialization Process
The serialize
method performs a preorder DFS traversal:
def dfs(root: Optional[TreeNode]):
if root is None:
return
nums.append(root.val) # Visit root
dfs(root.left) # Traverse left subtree
dfs(root.right) # Traverse right subtree
We collect all node values in a list nums
during traversal, then join them with spaces to create the serialized string. For a BST like:
5 / \ 3 7 / / 2 6
The serialization produces: "5 3 2 7 6"
Deserialization Process
The deserialize
method is more sophisticated, using bounds to reconstruct the tree:
def dfs(mi: int, mx: int) -> Optional[TreeNode]:
nonlocal i
if i == len(nums) or not mi <= nums[i] <= mx:
return None
x = nums[i]
root = TreeNode(x)
i += 1
root.left = dfs(mi, x)
root.right = dfs(x, mx)
return root
Key components:
-
Index Pointer (
i
): Tracks our position in the serialized array. We usenonlocal i
to maintain state across recursive calls. -
Bounds Checking (
mi
,mx
): Each recursive call has minimum and maximum bounds for valid node values:- Initial call:
dfs(-inf, inf)
for the root - Left child:
dfs(mi, x)
- values must be between parent's minimum and parent's value - Right child:
dfs(x, mx)
- values must be between parent's value and parent's maximum
- Initial call:
-
Termination Conditions:
i == len(nums)
: No more values to processnot mi <= nums[i] <= mx
: Current value doesn't fit in this position's bounds
Walkthrough with "5 3 2 7 6"
:
- Start with
i=0
, bounds(-inf, inf)
. Take5
as root. - Build left subtree with bounds
(-inf, 5)
:i=1
, value3
fits (3 < 5), create node- Build its left with bounds
(-inf, 3)
:i=2
, value2
fits (2 < 3), create node- Try left with bounds
(-inf, 2)
:i=3
, value7
doesn't fit (7 > 2), return None - Try right with bounds
(2, 3)
:i=3
, value7
doesn't fit (7 > 3), return None
- Build its right with bounds
(3, 5)
:i=3
, value7
doesn't fit (7 > 5), return None
- Build right subtree with bounds
(5, inf)
:i=3
, value7
fits (7 > 5), create node- Build its left with bounds
(5, 7)
:i=4
, value6
fits (5 < 6 < 7), create node
- Build its right with bounds
(7, inf)
:i=5
, no more values, return None
The algorithm efficiently reconstructs the exact tree structure using only the values and BST properties, achieving optimal space complexity in serialization.
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a simple example with this BST:
4 / \ 2 5 / 1
Serialization Process:
Starting from root 4
, we perform preorder traversal:
- Visit root: Add
4
to our list - Go left to
2
: Add2
to our list - Go left to
1
: Add1
to our list 1
has no children, backtrack to2
2
has no right child, backtrack to4
- Go right to
5
: Add5
to our list 5
has no children, done
Result: "4 2 1 5"
Deserialization Process:
Given string "4 2 1 5"
, convert to array [4, 2, 1, 5]
and start with index i=0
:
-
Build root with bounds
(-∞, ∞)
:nums[0]=4
fits in(-∞, ∞)
, create node with value4
- Increment
i
to1
-
Build left subtree of 4 with bounds
(-∞, 4)
:nums[1]=2
fits in(-∞, 4)
(since 2 < 4), create node with value2
- Increment
i
to2
-
Build left subtree of 2 with bounds
(-∞, 2)
:nums[2]=1
fits in(-∞, 2)
(since 1 < 2), create node with value1
- Increment
i
to3
-
Build left subtree of 1 with bounds
(-∞, 1)
:nums[3]=5
doesn't fit (5 > 1), returnNone
- Node
1
has no left child
-
Build right subtree of 1 with bounds
(1, 2)
:nums[3]=5
doesn't fit (5 > 2), returnNone
- Node
1
has no right child
-
Build right subtree of 2 with bounds
(2, 4)
:nums[3]=5
doesn't fit (5 > 4), returnNone
- Node
2
has no right child
-
Build right subtree of 4 with bounds
(4, ∞)
:nums[3]=5
fits in(4, ∞)
(since 5 > 4), create node with value5
- Increment
i
to4
-
Build children of 5:
i=4
equals array length, returnNone
for both children- Node
5
is a leaf
The tree is successfully reconstructed! The bounds mechanism ensures each value is placed in the correct position without needing any null markers in our serialization.
Solution Implementation
1# Definition for a binary tree node.
2# class TreeNode:
3# def __init__(self, x):
4# self.val = x
5# self.left = None
6# self.right = None
7
8from typing import Optional
9from math import inf
10
11
12class Codec:
13 def serialize(self, root: Optional[TreeNode]) -> str:
14 """Encodes a tree to a single string.
15
16 Uses preorder traversal to serialize the BST.
17 Since it's a BST, we don't need to store null markers.
18 """
19
20 def preorder_traversal(node: Optional[TreeNode]) -> None:
21 """Helper function to perform preorder traversal and collect values."""
22 if node is None:
23 return
24
25 # Visit root first (preorder)
26 values.append(node.val)
27 # Then traverse left subtree
28 preorder_traversal(node.left)
29 # Finally traverse right subtree
30 preorder_traversal(node.right)
31
32 # List to store the node values in preorder
33 values = []
34 preorder_traversal(root)
35
36 # Convert list of integers to space-separated string
37 return " ".join(map(str, values))
38
39 def deserialize(self, data: str) -> Optional[TreeNode]:
40 """Decodes your encoded data to tree.
41
42 Reconstructs the BST from preorder traversal using BST property:
43 - Left subtree values are less than root
44 - Right subtree values are greater than root
45 """
46
47 def build_bst(min_val: float, max_val: float) -> Optional[TreeNode]:
48 """Helper function to recursively build BST with value constraints.
49
50 Args:
51 min_val: Minimum allowed value for current node
52 max_val: Maximum allowed value for current node
53
54 Returns:
55 Root of the constructed subtree
56 """
57 nonlocal current_index
58
59 # Check if we've processed all values or current value doesn't fit constraints
60 if current_index == len(values) or not (min_val <= values[current_index] <= max_val):
61 return None
62
63 # Current value becomes the root of this subtree
64 root_value = values[current_index]
65 root_node = TreeNode(root_value)
66 current_index += 1
67
68 # Build left subtree with values less than root_value
69 root_node.left = build_bst(min_val, root_value)
70 # Build right subtree with values greater than root_value
71 root_node.right = build_bst(root_value, max_val)
72
73 return root_node
74
75 # Handle empty tree case
76 if not data:
77 return None
78
79 # Convert string back to list of integers
80 values = list(map(int, data.split()))
81
82 # Index to track current position in values list
83 current_index = 0
84
85 # Start building BST with no constraints
86 return build_bst(-inf, inf)
87
88
89# Your Codec object will be instantiated and called as such:
90# ser = Codec()
91# deser = Codec()
92# tree = ser.serialize(root)
93# ans = deser.deserialize(tree)
94
1/**
2 * Definition for a binary tree node.
3 * public class TreeNode {
4 * int val;
5 * TreeNode left;
6 * TreeNode right;
7 * TreeNode(int x) { val = x; }
8 * }
9 */
10public class Codec {
11 // Index pointer for deserialization traversal
12 private int currentIndex;
13
14 // List to store serialized node values
15 private List<String> nodeValues;
16
17 // Maximum value constant for boundary checking
18 private static final int INFINITY = 1 << 30;
19
20 /**
21 * Encodes a binary search tree to a single string.
22 * Uses preorder traversal to serialize the tree.
23 *
24 * @param root The root of the BST to serialize
25 * @return A string representation of the BST
26 */
27 public String serialize(TreeNode root) {
28 nodeValues = new ArrayList<>();
29 serializeHelper(root);
30 return String.join(" ", nodeValues);
31 }
32
33 /**
34 * Decodes the encoded string back to a binary search tree.
35 * Uses BST property with min/max boundaries to reconstruct the tree.
36 *
37 * @param data The serialized string representation of the BST
38 * @return The root of the reconstructed BST
39 */
40 public TreeNode deserialize(String data) {
41 // Handle empty tree case
42 if (data == null || data.isEmpty()) {
43 return null;
44 }
45
46 // Initialize for deserialization
47 currentIndex = 0;
48 nodeValues = Arrays.asList(data.split(" "));
49
50 // Reconstruct tree with full range boundaries
51 return deserializeHelper(-INFINITY, INFINITY);
52 }
53
54 /**
55 * Helper method for serialization using preorder traversal.
56 * Visits root, then left subtree, then right subtree.
57 *
58 * @param root Current node being serialized
59 */
60 private void serializeHelper(TreeNode root) {
61 if (root == null) {
62 return;
63 }
64
65 // Add current node value to the list
66 nodeValues.add(String.valueOf(root.val));
67
68 // Recursively serialize left and right subtrees
69 serializeHelper(root.left);
70 serializeHelper(root.right);
71 }
72
73 /**
74 * Helper method for deserialization using BST properties.
75 * Reconstructs the tree by checking if values fall within valid BST boundaries.
76 *
77 * @param minValue Minimum valid value for current subtree
78 * @param maxValue Maximum valid value for current subtree
79 * @return Root of the reconstructed subtree
80 */
81 private TreeNode deserializeHelper(int minValue, int maxValue) {
82 // Check if we've processed all values
83 if (currentIndex == nodeValues.size()) {
84 return null;
85 }
86
87 // Parse the current value
88 int currentValue = Integer.parseInt(nodeValues.get(currentIndex));
89
90 // Check if current value violates BST property
91 if (currentValue < minValue || currentValue > maxValue) {
92 return null;
93 }
94
95 // Create new node with current value
96 TreeNode root = new TreeNode(currentValue);
97 currentIndex++;
98
99 // Recursively build left subtree (values less than current)
100 root.left = deserializeHelper(minValue, currentValue);
101
102 // Recursively build right subtree (values greater than current)
103 root.right = deserializeHelper(currentValue, maxValue);
104
105 return root;
106 }
107}
108
109// Your Codec object will be instantiated and called as such:
110// Codec ser = new Codec();
111// Codec deser = new Codec();
112// String tree = ser.serialize(root);
113// TreeNode ans = deser.deserialize(tree);
114// return ans;
115
1/**
2 * Definition for a binary tree node.
3 * struct TreeNode {
4 * int val;
5 * TreeNode *left;
6 * TreeNode *right;
7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
8 * };
9 */
10class Codec {
11public:
12 /**
13 * Serializes a BST to a single string using preorder traversal.
14 * The BST property allows us to reconstruct without null markers.
15 * @param root The root of the BST to serialize
16 * @return A space-separated string of node values in preorder
17 */
18 string serialize(TreeNode* root) {
19 if (!root) {
20 return "";
21 }
22
23 string serialized_data = "";
24
25 // Preorder traversal to build the serialized string
26 function<void(TreeNode*)> preorder_traverse = [&](TreeNode* node) {
27 if (!node) {
28 return;
29 }
30
31 // Append current node value
32 serialized_data += to_string(node->val) + " ";
33
34 // Traverse left subtree
35 preorder_traverse(node->left);
36
37 // Traverse right subtree
38 preorder_traverse(node->right);
39 };
40
41 preorder_traverse(root);
42
43 // Remove trailing space
44 serialized_data.pop_back();
45
46 return serialized_data;
47 }
48
49 /**
50 * Deserializes the encoded string back to a BST.
51 * Uses the BST property with min/max bounds to reconstruct the tree.
52 * @param data The serialized string representation of the BST
53 * @return The root of the reconstructed BST
54 */
55 TreeNode* deserialize(string data) {
56 if (data.empty()) {
57 return nullptr;
58 }
59
60 // Parse the string into a vector of integers
61 vector<int> node_values = split_string(data, ' ');
62 int current_index = 0;
63
64 // Recursively build the BST using value bounds
65 function<TreeNode*(int, int)> build_tree = [&](int min_bound, int max_bound) -> TreeNode* {
66 // Check if we've processed all values or current value is out of bounds
67 if (current_index == node_values.size() ||
68 node_values[current_index] < min_bound ||
69 node_values[current_index] > max_bound) {
70 return nullptr;
71 }
72
73 // Get current value and increment index
74 int current_value = node_values[current_index++];
75
76 // Create new node
77 TreeNode* node = new TreeNode(current_value);
78
79 // Build left subtree (values must be less than current)
80 node->left = build_tree(min_bound, current_value);
81
82 // Build right subtree (values must be greater than current)
83 node->right = build_tree(current_value, max_bound);
84
85 return node;
86 };
87
88 // Start building with full integer range
89 return build_tree(INT_MIN, INT_MAX);
90 }
91
92private:
93 /**
94 * Helper function to split a string by delimiter into integers.
95 * @param str The input string to split
96 * @param delimiter The character to split by
97 * @return A vector of integers parsed from the string
98 */
99 vector<int> split_string(const string& str, char delimiter) {
100 vector<int> result;
101 stringstream string_stream(str);
102 string token;
103
104 // Extract tokens separated by delimiter
105 while (getline(string_stream, token, delimiter)) {
106 result.push_back(stoi(token));
107 }
108
109 return result;
110 }
111};
112
113// Your Codec object will be instantiated and called as such:
114// Codec* ser = new Codec();
115// Codec* deser = new Codec();
116// string tree = ser->serialize(root);
117// TreeNode* ans = deser->deserialize(tree);
118// return ans;
119
1/**
2 * Definition for a binary tree node.
3 */
4class TreeNode {
5 val: number;
6 left: TreeNode | null;
7 right: TreeNode | null;
8 constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
9 this.val = (val === undefined ? 0 : val);
10 this.left = (left === undefined ? null : left);
11 this.right = (right === undefined ? null : right);
12 }
13}
14
15/**
16 * Serializes a BST to a single string using preorder traversal.
17 * The BST property allows us to reconstruct without null markers.
18 * @param root The root of the BST to serialize
19 * @return A space-separated string of node values in preorder
20 */
21function serialize(root: TreeNode | null): string {
22 if (!root) {
23 return "";
24 }
25
26 let serializedData = "";
27
28 // Preorder traversal to build the serialized string
29 const preorderTraverse = (node: TreeNode | null): void => {
30 if (!node) {
31 return;
32 }
33
34 // Append current node value
35 serializedData += node.val.toString() + " ";
36
37 // Traverse left subtree
38 preorderTraverse(node.left);
39
40 // Traverse right subtree
41 preorderTraverse(node.right);
42 };
43
44 preorderTraverse(root);
45
46 // Remove trailing space
47 serializedData = serializedData.slice(0, -1);
48
49 return serializedData;
50}
51
52/**
53 * Deserializes the encoded string back to a BST.
54 * Uses the BST property with min/max bounds to reconstruct the tree.
55 * @param data The serialized string representation of the BST
56 * @return The root of the reconstructed BST
57 */
58function deserialize(data: string): TreeNode | null {
59 if (data.length === 0) {
60 return null;
61 }
62
63 // Parse the string into an array of integers
64 const nodeValues = splitString(data, ' ');
65 let currentIndex = 0;
66
67 // Recursively build the BST using value bounds
68 const buildTree = (minBound: number, maxBound: number): TreeNode | null => {
69 // Check if we've processed all values or current value is out of bounds
70 if (currentIndex === nodeValues.length ||
71 nodeValues[currentIndex] < minBound ||
72 nodeValues[currentIndex] > maxBound) {
73 return null;
74 }
75
76 // Get current value and increment index
77 const currentValue = nodeValues[currentIndex++];
78
79 // Create new node
80 const node = new TreeNode(currentValue);
81
82 // Build left subtree (values must be less than current)
83 node.left = buildTree(minBound, currentValue);
84
85 // Build right subtree (values must be greater than current)
86 node.right = buildTree(currentValue, maxBound);
87
88 return node;
89 };
90
91 // Start building with full integer range
92 return buildTree(-Infinity, Infinity);
93}
94
95/**
96 * Helper function to split a string by delimiter into integers.
97 * @param str The input string to split
98 * @param delimiter The character to split by
99 * @return An array of integers parsed from the string
100 */
101function splitString(str: string, delimiter: string): number[] {
102 const result: number[] = [];
103
104 // Split the string by delimiter and convert each token to integer
105 const tokens = str.split(delimiter);
106
107 for (const token of tokens) {
108 if (token.length > 0) {
109 result.push(parseInt(token, 10));
110 }
111 }
112
113 return result;
114}
115
116/**
117 * Your functions will be called as such:
118 * deserialize(serialize(root));
119 */
120
Time and Space Complexity
Time Complexity
Serialize: O(n)
where n
is the number of nodes in the tree.
- The DFS traversal visits each node exactly once to append its value to the list.
- Converting the list to a string with
" ".join(map(str, nums))
takesO(n)
time. - Overall:
O(n) + O(n) = O(n)
Deserialize: O(n)
where n
is the number of nodes in the tree.
- Each value in the serialized string is processed at most once due to the index
i
being incremented and never reset. - For each node, we perform constant time operations: creating a TreeNode and checking bounds.
- The bounds checking
mi <= nums[i] <= mx
helps determine if the current value belongs to the current subtree inO(1)
time. - Overall:
O(n)
Space Complexity
Serialize: O(n)
- The
nums
list stores alln
node values:O(n)
- The recursion stack depth is
O(h)
whereh
is the height of the tree (worst caseO(n)
for skewed tree, best caseO(log n)
for balanced tree) - The output string also takes
O(n)
space - Overall:
O(n)
Deserialize: O(n)
- The
nums
list created from splitting the input string:O(n)
- The recursion stack depth is
O(h)
whereh
is the height of the tree (worst caseO(n)
for skewed tree, best caseO(log n)
for balanced tree) - The reconstructed tree itself requires
O(n)
space forn
nodes - Overall:
O(n)
Common Pitfalls
1. Using a Local Variable Instead of Nonlocal for Index Tracking
One of the most common mistakes is trying to use a regular local variable or parameter to track the current index during deserialization:
Incorrect approach:
def deserialize(self, data: str) -> Optional[TreeNode]:
def build_bst(index: int, min_val: float, max_val: float) -> Optional[TreeNode]:
if index == len(values) or not (min_val <= values[index] <= max_val):
return None
root_value = values[index]
root_node = TreeNode(root_value)
index += 1 # This doesn't persist across recursive calls!
root_node.left = build_bst(index, min_val, root_value)
root_node.right = build_bst(index, root_value, max_val)
return root_node
values = list(map(int, data.split()))
return build_bst(0, -inf, inf)
Why it fails: Each recursive call gets its own copy of index
, so incrementing it in one call doesn't affect other calls. This causes the same values to be processed multiple times, creating an incorrect tree structure.
Solution: Use nonlocal
to maintain a single shared index across all recursive calls:
def build_bst(min_val: float, max_val: float) -> Optional[TreeNode]:
nonlocal current_index # Share the index across all recursive calls
# ... rest of the logic
2. Incorrect Bound Updates During Recursion
Another frequent error is swapping or incorrectly setting the bounds when making recursive calls:
Incorrect approach:
# Wrong: Using the same bounds for both subtrees root_node.left = build_bst(min_val, max_val) root_node.right = build_bst(min_val, max_val) # Or wrong: Swapping the bound logic root_node.left = build_bst(root_value, max_val) # Should be (min_val, root_value) root_node.right = build_bst(min_val, root_value) # Should be (root_value, max_val)
Why it fails: BST property requires that all nodes in the left subtree be less than the root, and all nodes in the right subtree be greater. Using incorrect bounds breaks this invariant and results in incorrect tree reconstruction.
Solution: Remember the BST property when setting bounds:
- Left subtree: values must be between
(parent's min, parent's value)
- Right subtree: values must be between
(parent's value, parent's max)
3. Not Handling Edge Cases Properly
Common edge case mistakes:
# Forgetting to handle empty string
def deserialize(self, data: str) -> Optional[TreeNode]:
values = list(map(int, data.split())) # This fails on empty string!
# ...
# Not checking for empty tree in serialize
def serialize(self, root: Optional[TreeNode]) -> str:
values = []
preorder_traversal(root)
return " ".join(map(str, values)) # Returns "" for empty tree, which is correct
# But some might forget and try to add special markers
Solution: Always check for empty input:
def deserialize(self, data: str) -> Optional[TreeNode]:
if not data: # Handle empty tree case
return None
values = list(map(int, data.split()))
# ...
4. Using the Wrong Traversal Order
Incorrect approach: Using inorder or postorder traversal instead of preorder:
def serialize(self, root: Optional[TreeNode]) -> str:
def inorder_traversal(node):
if node is None:
return
inorder_traversal(node.left)
values.append(node.val) # Inorder: left, root, right
inorder_traversal(node.right)
Why it fails: The deserialization algorithm relies on preorder traversal because it needs to know the root value first to establish bounds for subtrees. With inorder or postorder, you can't determine which value should be the root without additional information.
Solution: Always use preorder traversal (root, left, right) for this approach, as it naturally provides the root first, allowing immediate bound establishment for subtrees.
Problem: Given a list of tasks and a list of requirements, compute a sequence of tasks that can be performed, such that we complete every task once while satisfying all the requirements.
Which of the following method should we use to solve this problem?
Recommended Readings
Everything About Trees A tree is a type of graph data structure composed of nodes and edges Its main properties are It is acyclic doesn't contain any cycles There exists a path from the root to any node Has N 1 edges where N is the number of nodes in the tree and
https assets algo monster cover_photos dfs svg Depth First Search Prereqs Recursion Review problems recursion_intro Trees problems tree_intro With a solid understanding of recursion under our belts we are now ready to tackle one of the most useful techniques in coding interviews Depth First Search DFS As the name suggests
https assets algo monster cover_photos bfs svg Breadth First Search on Trees Hopefully by this time you've drunk enough DFS Kool Aid to understand its immense power and seen enough visualization to create a call stack in your mind Now let me introduce the companion spell Breadth First Search BFS
Want a Structured Path to Master System Design Too? Don’t Miss This!