Facebook Pixel

449. Serialize and Deserialize BST

Problem Description

This problem asks you to design an algorithm to serialize and deserialize a Binary Search Tree (BST).

Serialization means converting a tree data structure into a string representation that can be stored or transmitted. Deserialization means reconstructing the original tree from that string representation.

Key requirements:

  • You need to implement two methods: serialize and deserialize
  • The serialize method takes a BST root node and returns a string
  • The deserialize method takes the string and reconstructs the original BST
  • The encoded string should be as compact as possible
  • There's no restriction on the specific format you choose for serialization

The solution leverages the BST property where left subtree values are less than the root and right subtree values are greater than the root.

Serialization approach:

  • Performs a preorder traversal (root, left, right) of the BST
  • Stores node values in order, separated by spaces
  • Example: For BST with root 2, left child 1, right child 3, it produces "2 1 3"

Deserialization approach:

  • Uses the BST property to reconstruct the tree without storing null markers
  • Maintains min/max bounds for valid node values at each position
  • Starting with bounds (-inf, inf) for the root:
    • Takes the next value from the serialized string if it's within bounds
    • Creates a node with that value
    • Recursively builds left subtree with bounds (min, current_value)
    • Recursively builds right subtree with bounds (current_value, max)
  • The bounds ensure nodes are placed correctly according to BST rules

This approach is efficient because it only stores actual node values (no null markers needed), making the serialization compact while still allowing perfect reconstruction of the original BST structure.

Flowchart Walkthrough

First, let's pin down the algorithm using the Flowchart. Here's a step-by-step walkthrough:

Is it a graph?

  • Yes: A tree is a special type of graph (specifically, a connected acyclic graph). Binary Search Trees are graph structures with nodes and edges connecting parent nodes to their children.

Is it a tree?

  • Yes: The problem explicitly deals with a Binary Search Tree, which is a hierarchical tree data structure where each node has at most two children.

DFS

  • Conclusion reached: Since we're working with a tree structure, the flowchart directs us to use DFS (Depth-First Search).

The flowchart correctly identifies that for tree-based problems, DFS is the appropriate algorithm pattern. This makes sense for our serialize and deserialize BST problem because:

  1. Serialization requires visiting every node in the tree to record its value - DFS with preorder traversal efficiently visits all nodes while maintaining the structural information needed for BST reconstruction.

  2. Deserialization needs to reconstruct the tree by processing nodes in the same order they were serialized - DFS allows us to rebuild the tree recursively, using the BST property (left < root < right) to determine where each node belongs without needing explicit null markers.

Conclusion: The flowchart suggests using a DFS approach for serializing and deserializing the Binary Search Tree, which aligns perfectly with the solution that uses recursive DFS traversal for both operations.

Quick Interview Experience
Help others by sharing your interview experience
Have you seen this problem before?

Intuition

The key insight comes from understanding what makes a Binary Search Tree special compared to a regular binary tree. In a BST, for any node, all values in its left subtree are smaller and all values in its right subtree are larger. This property is the foundation of our solution.

When we serialize a regular binary tree, we typically need to include null markers to indicate missing children. Otherwise, during deserialization, we can't distinguish between different tree structures. For example, both a tree with only a left child and a tree with only a right child would serialize to the same sequence without null markers.

However, with a BST, we can be smarter. If we use preorder traversal (visit root, then left subtree, then right subtree) for serialization, we get a special property: the first value is always the root, and we can determine which subsequent values belong to the left or right subtree based on whether they're smaller or larger than the root.

Consider this example: BST with values [5, 3, 7, 2, 6] in preorder. When deserializing:

  • 5 is the root
  • 3 is less than 5, so it goes to the left subtree
  • 2 is less than 5 and less than 3, so it's 3's left child
  • 7 is greater than 5, so it goes to the right subtree
  • 6 is greater than 5 but less than 7, so it's 7's left child

The brilliant part is using bounds during deserialization. Each position in the tree has valid value ranges:

  • The root can be any value: (-∞, +∞)
  • The left child of a node with value x must be in range (-∞, x)
  • The right child of a node with value x must be in range (x, +∞)

By maintaining these bounds as we recursively build the tree, we know exactly when to stop building a subtree (when the next value violates the bounds) and return to build the other subtree. This eliminates the need for null markers entirely, making our serialization as compact as possible - we only store the actual values.

This approach elegantly combines the BST property with DFS traversal to achieve both compact serialization and accurate deserialization without any ambiguity about the tree structure.

Solution Approach

The implementation consists of two main methods: serialize and deserialize, both using DFS traversal patterns.

Serialization Process

The serialize method performs a preorder DFS traversal:

def dfs(root: Optional[TreeNode]):
    if root is None:
        return
    nums.append(root.val)  # Visit root
    dfs(root.left)         # Traverse left subtree
    dfs(root.right)        # Traverse right subtree

We collect all node values in a list nums during traversal, then join them with spaces to create the serialized string. For a BST like:

    5
   / \
  3   7
 /   /
2   6

The serialization produces: "5 3 2 7 6"

Deserialization Process

The deserialize method is more sophisticated, using bounds to reconstruct the tree:

def dfs(mi: int, mx: int) -> Optional[TreeNode]:
    nonlocal i
    if i == len(nums) or not mi <= nums[i] <= mx:
        return None
    x = nums[i]
    root = TreeNode(x)
    i += 1
    root.left = dfs(mi, x)
    root.right = dfs(x, mx)
    return root

Key components:

  1. Index Pointer (i): Tracks our position in the serialized array. We use nonlocal i to maintain state across recursive calls.

  2. Bounds Checking (mi, mx): Each recursive call has minimum and maximum bounds for valid node values:

    • Initial call: dfs(-inf, inf) for the root
    • Left child: dfs(mi, x) - values must be between parent's minimum and parent's value
    • Right child: dfs(x, mx) - values must be between parent's value and parent's maximum
  3. Termination Conditions:

    • i == len(nums): No more values to process
    • not mi <= nums[i] <= mx: Current value doesn't fit in this position's bounds

Walkthrough with "5 3 2 7 6":

  1. Start with i=0, bounds (-inf, inf). Take 5 as root.
  2. Build left subtree with bounds (-inf, 5):
    • i=1, value 3 fits (3 < 5), create node
    • Build its left with bounds (-inf, 3):
      • i=2, value 2 fits (2 < 3), create node
      • Try left with bounds (-inf, 2): i=3, value 7 doesn't fit (7 > 2), return None
      • Try right with bounds (2, 3): i=3, value 7 doesn't fit (7 > 3), return None
    • Build its right with bounds (3, 5):
      • i=3, value 7 doesn't fit (7 > 5), return None
  3. Build right subtree with bounds (5, inf):
    • i=3, value 7 fits (7 > 5), create node
    • Build its left with bounds (5, 7):
      • i=4, value 6 fits (5 < 6 < 7), create node
    • Build its right with bounds (7, inf):
      • i=5, no more values, return None

The algorithm efficiently reconstructs the exact tree structure using only the values and BST properties, achieving optimal space complexity in serialization.

Ready to land your dream job?

Unlock your dream job with a 5-minute evaluator for a personalized learning plan!

Start Evaluator

Example Walkthrough

Let's walk through a simple example with this BST:

    4
   / \
  2   5
 /
1

Serialization Process:

Starting from root 4, we perform preorder traversal:

  1. Visit root: Add 4 to our list
  2. Go left to 2: Add 2 to our list
  3. Go left to 1: Add 1 to our list
  4. 1 has no children, backtrack to 2
  5. 2 has no right child, backtrack to 4
  6. Go right to 5: Add 5 to our list
  7. 5 has no children, done

Result: "4 2 1 5"

Deserialization Process:

Given string "4 2 1 5", convert to array [4, 2, 1, 5] and start with index i=0:

  1. Build root with bounds (-∞, ∞):

    • nums[0]=4 fits in (-∞, ∞), create node with value 4
    • Increment i to 1
  2. Build left subtree of 4 with bounds (-∞, 4):

    • nums[1]=2 fits in (-∞, 4) (since 2 < 4), create node with value 2
    • Increment i to 2
  3. Build left subtree of 2 with bounds (-∞, 2):

    • nums[2]=1 fits in (-∞, 2) (since 1 < 2), create node with value 1
    • Increment i to 3
  4. Build left subtree of 1 with bounds (-∞, 1):

    • nums[3]=5 doesn't fit (5 > 1), return None
    • Node 1 has no left child
  5. Build right subtree of 1 with bounds (1, 2):

    • nums[3]=5 doesn't fit (5 > 2), return None
    • Node 1 has no right child
  6. Build right subtree of 2 with bounds (2, 4):

    • nums[3]=5 doesn't fit (5 > 4), return None
    • Node 2 has no right child
  7. Build right subtree of 4 with bounds (4, ∞):

    • nums[3]=5 fits in (4, ∞) (since 5 > 4), create node with value 5
    • Increment i to 4
  8. Build children of 5:

    • i=4 equals array length, return None for both children
    • Node 5 is a leaf

The tree is successfully reconstructed! The bounds mechanism ensures each value is placed in the correct position without needing any null markers in our serialization.

Solution Implementation

1# Definition for a binary tree node.
2# class TreeNode:
3#     def __init__(self, x):
4#         self.val = x
5#         self.left = None
6#         self.right = None
7
8from typing import Optional
9from math import inf
10
11
12class Codec:
13    def serialize(self, root: Optional[TreeNode]) -> str:
14        """Encodes a tree to a single string.
15      
16        Uses preorder traversal to serialize the BST.
17        Since it's a BST, we don't need to store null markers.
18        """
19      
20        def preorder_traversal(node: Optional[TreeNode]) -> None:
21            """Helper function to perform preorder traversal and collect values."""
22            if node is None:
23                return
24          
25            # Visit root first (preorder)
26            values.append(node.val)
27            # Then traverse left subtree
28            preorder_traversal(node.left)
29            # Finally traverse right subtree
30            preorder_traversal(node.right)
31      
32        # List to store the node values in preorder
33        values = []
34        preorder_traversal(root)
35      
36        # Convert list of integers to space-separated string
37        return " ".join(map(str, values))
38
39    def deserialize(self, data: str) -> Optional[TreeNode]:
40        """Decodes your encoded data to tree.
41      
42        Reconstructs the BST from preorder traversal using BST property:
43        - Left subtree values are less than root
44        - Right subtree values are greater than root
45        """
46      
47        def build_bst(min_val: float, max_val: float) -> Optional[TreeNode]:
48            """Helper function to recursively build BST with value constraints.
49          
50            Args:
51                min_val: Minimum allowed value for current node
52                max_val: Maximum allowed value for current node
53          
54            Returns:
55                Root of the constructed subtree
56            """
57            nonlocal current_index
58          
59            # Check if we've processed all values or current value doesn't fit constraints
60            if current_index == len(values) or not (min_val <= values[current_index] <= max_val):
61                return None
62          
63            # Current value becomes the root of this subtree
64            root_value = values[current_index]
65            root_node = TreeNode(root_value)
66            current_index += 1
67          
68            # Build left subtree with values less than root_value
69            root_node.left = build_bst(min_val, root_value)
70            # Build right subtree with values greater than root_value
71            root_node.right = build_bst(root_value, max_val)
72          
73            return root_node
74      
75        # Handle empty tree case
76        if not data:
77            return None
78      
79        # Convert string back to list of integers
80        values = list(map(int, data.split()))
81      
82        # Index to track current position in values list
83        current_index = 0
84      
85        # Start building BST with no constraints
86        return build_bst(-inf, inf)
87
88
89# Your Codec object will be instantiated and called as such:
90# ser = Codec()
91# deser = Codec()
92# tree = ser.serialize(root)
93# ans = deser.deserialize(tree)
94
1/**
2 * Definition for a binary tree node.
3 * public class TreeNode {
4 *     int val;
5 *     TreeNode left;
6 *     TreeNode right;
7 *     TreeNode(int x) { val = x; }
8 * }
9 */
10public class Codec {
11    // Index pointer for deserialization traversal
12    private int currentIndex;
13  
14    // List to store serialized node values
15    private List<String> nodeValues;
16  
17    // Maximum value constant for boundary checking
18    private static final int INFINITY = 1 << 30;
19
20    /**
21     * Encodes a binary search tree to a single string.
22     * Uses preorder traversal to serialize the tree.
23     * 
24     * @param root The root of the BST to serialize
25     * @return A string representation of the BST
26     */
27    public String serialize(TreeNode root) {
28        nodeValues = new ArrayList<>();
29        serializeHelper(root);
30        return String.join(" ", nodeValues);
31    }
32
33    /**
34     * Decodes the encoded string back to a binary search tree.
35     * Uses BST property with min/max boundaries to reconstruct the tree.
36     * 
37     * @param data The serialized string representation of the BST
38     * @return The root of the reconstructed BST
39     */
40    public TreeNode deserialize(String data) {
41        // Handle empty tree case
42        if (data == null || data.isEmpty()) {
43            return null;
44        }
45      
46        // Initialize for deserialization
47        currentIndex = 0;
48        nodeValues = Arrays.asList(data.split(" "));
49      
50        // Reconstruct tree with full range boundaries
51        return deserializeHelper(-INFINITY, INFINITY);
52    }
53
54    /**
55     * Helper method for serialization using preorder traversal.
56     * Visits root, then left subtree, then right subtree.
57     * 
58     * @param root Current node being serialized
59     */
60    private void serializeHelper(TreeNode root) {
61        if (root == null) {
62            return;
63        }
64      
65        // Add current node value to the list
66        nodeValues.add(String.valueOf(root.val));
67      
68        // Recursively serialize left and right subtrees
69        serializeHelper(root.left);
70        serializeHelper(root.right);
71    }
72
73    /**
74     * Helper method for deserialization using BST properties.
75     * Reconstructs the tree by checking if values fall within valid BST boundaries.
76     * 
77     * @param minValue Minimum valid value for current subtree
78     * @param maxValue Maximum valid value for current subtree
79     * @return Root of the reconstructed subtree
80     */
81    private TreeNode deserializeHelper(int minValue, int maxValue) {
82        // Check if we've processed all values
83        if (currentIndex == nodeValues.size()) {
84            return null;
85        }
86      
87        // Parse the current value
88        int currentValue = Integer.parseInt(nodeValues.get(currentIndex));
89      
90        // Check if current value violates BST property
91        if (currentValue < minValue || currentValue > maxValue) {
92            return null;
93        }
94      
95        // Create new node with current value
96        TreeNode root = new TreeNode(currentValue);
97        currentIndex++;
98      
99        // Recursively build left subtree (values less than current)
100        root.left = deserializeHelper(minValue, currentValue);
101      
102        // Recursively build right subtree (values greater than current)
103        root.right = deserializeHelper(currentValue, maxValue);
104      
105        return root;
106    }
107}
108
109// Your Codec object will be instantiated and called as such:
110// Codec ser = new Codec();
111// Codec deser = new Codec();
112// String tree = ser.serialize(root);
113// TreeNode ans = deser.deserialize(tree);
114// return ans;
115
1/**
2 * Definition for a binary tree node.
3 * struct TreeNode {
4 *     int val;
5 *     TreeNode *left;
6 *     TreeNode *right;
7 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
8 * };
9 */
10class Codec {
11public:
12    /**
13     * Serializes a BST to a single string using preorder traversal.
14     * The BST property allows us to reconstruct without null markers.
15     * @param root The root of the BST to serialize
16     * @return A space-separated string of node values in preorder
17     */
18    string serialize(TreeNode* root) {
19        if (!root) {
20            return "";
21        }
22      
23        string serialized_data = "";
24      
25        // Preorder traversal to build the serialized string
26        function<void(TreeNode*)> preorder_traverse = [&](TreeNode* node) {
27            if (!node) {
28                return;
29            }
30          
31            // Append current node value
32            serialized_data += to_string(node->val) + " ";
33          
34            // Traverse left subtree
35            preorder_traverse(node->left);
36          
37            // Traverse right subtree
38            preorder_traverse(node->right);
39        };
40      
41        preorder_traverse(root);
42      
43        // Remove trailing space
44        serialized_data.pop_back();
45      
46        return serialized_data;
47    }
48
49    /**
50     * Deserializes the encoded string back to a BST.
51     * Uses the BST property with min/max bounds to reconstruct the tree.
52     * @param data The serialized string representation of the BST
53     * @return The root of the reconstructed BST
54     */
55    TreeNode* deserialize(string data) {
56        if (data.empty()) {
57            return nullptr;
58        }
59      
60        // Parse the string into a vector of integers
61        vector<int> node_values = split_string(data, ' ');
62        int current_index = 0;
63      
64        // Recursively build the BST using value bounds
65        function<TreeNode*(int, int)> build_tree = [&](int min_bound, int max_bound) -> TreeNode* {
66            // Check if we've processed all values or current value is out of bounds
67            if (current_index == node_values.size() || 
68                node_values[current_index] < min_bound || 
69                node_values[current_index] > max_bound) {
70                return nullptr;
71            }
72          
73            // Get current value and increment index
74            int current_value = node_values[current_index++];
75          
76            // Create new node
77            TreeNode* node = new TreeNode(current_value);
78          
79            // Build left subtree (values must be less than current)
80            node->left = build_tree(min_bound, current_value);
81          
82            // Build right subtree (values must be greater than current)
83            node->right = build_tree(current_value, max_bound);
84          
85            return node;
86        };
87      
88        // Start building with full integer range
89        return build_tree(INT_MIN, INT_MAX);
90    }
91
92private:
93    /**
94     * Helper function to split a string by delimiter into integers.
95     * @param str The input string to split
96     * @param delimiter The character to split by
97     * @return A vector of integers parsed from the string
98     */
99    vector<int> split_string(const string& str, char delimiter) {
100        vector<int> result;
101        stringstream string_stream(str);
102        string token;
103      
104        // Extract tokens separated by delimiter
105        while (getline(string_stream, token, delimiter)) {
106            result.push_back(stoi(token));
107        }
108      
109        return result;
110    }
111};
112
113// Your Codec object will be instantiated and called as such:
114// Codec* ser = new Codec();
115// Codec* deser = new Codec();
116// string tree = ser->serialize(root);
117// TreeNode* ans = deser->deserialize(tree);
118// return ans;
119
1/**
2 * Definition for a binary tree node.
3 */
4class TreeNode {
5    val: number;
6    left: TreeNode | null;
7    right: TreeNode | null;
8    constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
9        this.val = (val === undefined ? 0 : val);
10        this.left = (left === undefined ? null : left);
11        this.right = (right === undefined ? null : right);
12    }
13}
14
15/**
16 * Serializes a BST to a single string using preorder traversal.
17 * The BST property allows us to reconstruct without null markers.
18 * @param root The root of the BST to serialize
19 * @return A space-separated string of node values in preorder
20 */
21function serialize(root: TreeNode | null): string {
22    if (!root) {
23        return "";
24    }
25  
26    let serializedData = "";
27  
28    // Preorder traversal to build the serialized string
29    const preorderTraverse = (node: TreeNode | null): void => {
30        if (!node) {
31            return;
32        }
33      
34        // Append current node value
35        serializedData += node.val.toString() + " ";
36      
37        // Traverse left subtree
38        preorderTraverse(node.left);
39      
40        // Traverse right subtree
41        preorderTraverse(node.right);
42    };
43  
44    preorderTraverse(root);
45  
46    // Remove trailing space
47    serializedData = serializedData.slice(0, -1);
48  
49    return serializedData;
50}
51
52/**
53 * Deserializes the encoded string back to a BST.
54 * Uses the BST property with min/max bounds to reconstruct the tree.
55 * @param data The serialized string representation of the BST
56 * @return The root of the reconstructed BST
57 */
58function deserialize(data: string): TreeNode | null {
59    if (data.length === 0) {
60        return null;
61    }
62  
63    // Parse the string into an array of integers
64    const nodeValues = splitString(data, ' ');
65    let currentIndex = 0;
66  
67    // Recursively build the BST using value bounds
68    const buildTree = (minBound: number, maxBound: number): TreeNode | null => {
69        // Check if we've processed all values or current value is out of bounds
70        if (currentIndex === nodeValues.length || 
71            nodeValues[currentIndex] < minBound || 
72            nodeValues[currentIndex] > maxBound) {
73            return null;
74        }
75      
76        // Get current value and increment index
77        const currentValue = nodeValues[currentIndex++];
78      
79        // Create new node
80        const node = new TreeNode(currentValue);
81      
82        // Build left subtree (values must be less than current)
83        node.left = buildTree(minBound, currentValue);
84      
85        // Build right subtree (values must be greater than current)
86        node.right = buildTree(currentValue, maxBound);
87      
88        return node;
89    };
90  
91    // Start building with full integer range
92    return buildTree(-Infinity, Infinity);
93}
94
95/**
96 * Helper function to split a string by delimiter into integers.
97 * @param str The input string to split
98 * @param delimiter The character to split by
99 * @return An array of integers parsed from the string
100 */
101function splitString(str: string, delimiter: string): number[] {
102    const result: number[] = [];
103  
104    // Split the string by delimiter and convert each token to integer
105    const tokens = str.split(delimiter);
106  
107    for (const token of tokens) {
108        if (token.length > 0) {
109            result.push(parseInt(token, 10));
110        }
111    }
112  
113    return result;
114}
115
116/**
117 * Your functions will be called as such:
118 * deserialize(serialize(root));
119 */
120

Time and Space Complexity

Time Complexity

Serialize: O(n) where n is the number of nodes in the tree.

  • The DFS traversal visits each node exactly once to append its value to the list.
  • Converting the list to a string with " ".join(map(str, nums)) takes O(n) time.
  • Overall: O(n) + O(n) = O(n)

Deserialize: O(n) where n is the number of nodes in the tree.

  • Each value in the serialized string is processed at most once due to the index i being incremented and never reset.
  • For each node, we perform constant time operations: creating a TreeNode and checking bounds.
  • The bounds checking mi <= nums[i] <= mx helps determine if the current value belongs to the current subtree in O(1) time.
  • Overall: O(n)

Space Complexity

Serialize: O(n)

  • The nums list stores all n node values: O(n)
  • The recursion stack depth is O(h) where h is the height of the tree (worst case O(n) for skewed tree, best case O(log n) for balanced tree)
  • The output string also takes O(n) space
  • Overall: O(n)

Deserialize: O(n)

  • The nums list created from splitting the input string: O(n)
  • The recursion stack depth is O(h) where h is the height of the tree (worst case O(n) for skewed tree, best case O(log n) for balanced tree)
  • The reconstructed tree itself requires O(n) space for n nodes
  • Overall: O(n)

Common Pitfalls

1. Using a Local Variable Instead of Nonlocal for Index Tracking

One of the most common mistakes is trying to use a regular local variable or parameter to track the current index during deserialization:

Incorrect approach:

def deserialize(self, data: str) -> Optional[TreeNode]:
    def build_bst(index: int, min_val: float, max_val: float) -> Optional[TreeNode]:
        if index == len(values) or not (min_val <= values[index] <= max_val):
            return None
      
        root_value = values[index]
        root_node = TreeNode(root_value)
        index += 1  # This doesn't persist across recursive calls!
      
        root_node.left = build_bst(index, min_val, root_value)
        root_node.right = build_bst(index, root_value, max_val)
        return root_node
  
    values = list(map(int, data.split()))
    return build_bst(0, -inf, inf)

Why it fails: Each recursive call gets its own copy of index, so incrementing it in one call doesn't affect other calls. This causes the same values to be processed multiple times, creating an incorrect tree structure.

Solution: Use nonlocal to maintain a single shared index across all recursive calls:

def build_bst(min_val: float, max_val: float) -> Optional[TreeNode]:
    nonlocal current_index  # Share the index across all recursive calls
    # ... rest of the logic

2. Incorrect Bound Updates During Recursion

Another frequent error is swapping or incorrectly setting the bounds when making recursive calls:

Incorrect approach:

# Wrong: Using the same bounds for both subtrees
root_node.left = build_bst(min_val, max_val)
root_node.right = build_bst(min_val, max_val)

# Or wrong: Swapping the bound logic
root_node.left = build_bst(root_value, max_val)  # Should be (min_val, root_value)
root_node.right = build_bst(min_val, root_value)  # Should be (root_value, max_val)

Why it fails: BST property requires that all nodes in the left subtree be less than the root, and all nodes in the right subtree be greater. Using incorrect bounds breaks this invariant and results in incorrect tree reconstruction.

Solution: Remember the BST property when setting bounds:

  • Left subtree: values must be between (parent's min, parent's value)
  • Right subtree: values must be between (parent's value, parent's max)

3. Not Handling Edge Cases Properly

Common edge case mistakes:

# Forgetting to handle empty string
def deserialize(self, data: str) -> Optional[TreeNode]:
    values = list(map(int, data.split()))  # This fails on empty string!
    # ...

# Not checking for empty tree in serialize
def serialize(self, root: Optional[TreeNode]) -> str:
    values = []
    preorder_traversal(root)
    return " ".join(map(str, values))  # Returns "" for empty tree, which is correct
    # But some might forget and try to add special markers

Solution: Always check for empty input:

def deserialize(self, data: str) -> Optional[TreeNode]:
    if not data:  # Handle empty tree case
        return None
    values = list(map(int, data.split()))
    # ...

4. Using the Wrong Traversal Order

Incorrect approach: Using inorder or postorder traversal instead of preorder:

def serialize(self, root: Optional[TreeNode]) -> str:
    def inorder_traversal(node):
        if node is None:
            return
        inorder_traversal(node.left)
        values.append(node.val)  # Inorder: left, root, right
        inorder_traversal(node.right)

Why it fails: The deserialization algorithm relies on preorder traversal because it needs to know the root value first to establish bounds for subtrees. With inorder or postorder, you can't determine which value should be the root without additional information.

Solution: Always use preorder traversal (root, left, right) for this approach, as it naturally provides the root first, allowing immediate bound establishment for subtrees.

Discover Your Strengths and Weaknesses: Take Our 5-Minute Quiz to Tailor Your Study Plan:

Problem: Given a list of tasks and a list of requirements, compute a sequence of tasks that can be performed, such that we complete every task once while satisfying all the requirements.

Which of the following method should we use to solve this problem?


Recommended Readings

Want a Structured Path to Master System Design Too? Don’t Miss This!

Load More