1622. Fancy Sequence
Problem Description
The task is to build a data structure that allows efficient manipulation of an integer sequence. The Fancy
class supports adding a new element to the sequence, applying an increment operation to all elements in the sequence, multiplying all elements by a given integer, and retrieving the element at a specific index position modulo 10^9 + 7
. It must perform these operations in such a way that getIndex
queries return the correct updated value after any number of addAll
and multAll
operations have been applied, or return -1
if the index is out of bounds.
Intuition
The main challenge in the given problem is that applying addAll
and multAll
operations naively to every element each time they are called will lead to a time complexity that is not feasible for large sequences and frequent updates.
To efficiently handle this, we need to defer these operations as much as possible so that we don’t actually apply them until necessary (i.e., when an element's value is queried with getIndex
).
This can be achieved using a Segment Tree, a data structure that allows efficient updates and queries on ranges of elements in a sequence. However, this is not a standard segment tree implementation. It needs to support not only the addition and multiplication operations but also the propagation of these operations to its child nodes (a process called lazy propagation). This ensures that we don’t perform the operation for every element immediately, but only apply it to segments and update child segments when needed.
The segment tree nodes are augmented with additional information that allows combining these operations efficiently. In this case, each node in the segment tree will contain three pieces of information: the total result of applying all queued operations to the segment (the value), the sum of all addAll
increments that need to be applied to the segment (add
), and the product of all multAll
multiplications that need to be applied (mul
).
The tree is built so that leaf nodes correspond to elements of our sequence. When an operation is called, we update the relevant segment(s) in the tree, marking the operation as pending to be applied later (lazy propagation). Upon a getIndex
query, as we traverse the tree, all pending operations for that particular segment are applied, ensuring that the returned value is correct.
The provided solution code implements this logic in a SegmentTree
class providing the necessary methods for adding, multiplying and querying nodes.
Learn more about Segment Tree and Math patterns.
Solution Approach
The solution approach utilizes a segment tree to handle range updates and queries efficiently. Let's walk through the main components of the implementation:
Segment Tree Structure (Node
class)
Each node represents a segment of the sequence. It contains:
left
andright
: Pointers to child nodes.l
andr
: The segment's range (inclusive).mid
: The midpoint for dividing the segment for child nodes.v
: The computed value with all operations applied.add
: The accumulated addition to be applied to the segment.mul
: The accumulated multiplication to be applied to the segment.
The root node represents the entire sequence range.
Key Operations of SegmentTree
class
-
modifyAdd
andmodifyMul
: These methods apply the add and multiply operations to a specified range. Both operations update the current node's deferred operation fields (add
andmul
) and values. They rely on recursion to propagate changes to relevant child nodes lazily. -
query
: This method retrieves the value at a specific index. If any deferred operations are pending on the path from root to the target index,query
applies them. It ensures that the final result returned is up to date with all applied operations. -
pushup
: After child nodes are updated,pushup
updates the current node's value (the sum of its children's values, moduloMOD
), ensuring the segment tree accurately represents the current sequence values. -
pushdown
: This method is where the lazy propagation magic happens. When accessing a node's children,pushdown
applies all the pendingadd
andmul
operations to its child nodes to ensure they have the correct deferred values. This way, the operations are propagated down the tree as necessary without unnecessary computation.
Interactions in Fancy
class
The Fancy
class employs the following methods to interact with the SegmentTree
:
append
: Simply increments the sequence's count (self.n
) and usesmodifyAdd
to append the new value to the end of the sequence.addAll
: CallsmodifyAdd
to apply the addition operation across the entire sequence.multAll
: CallsmodifyMul
to apply the multiplication operation across the entire sequence.getIndex
: Utilize thequery
method to return the modified value at the index if within bounds, else-1
.
Through this implementation, the Fancy
class wraps the efficient range update and query functionalities provided by the SegmentTree
, allowing it to process a sequence of alterations and fetches with much better performance than a naive approach.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Consider a Fancy
object where we perform the following sequence of operations to understand how the solution approach works in practice:
- Append
2
to the sequence. - Multiply all elements by
3
. - Add
4
to all elements. - Append
6
to the sequence. - Multiply all elements by
2
. - Retrieve the value at index
0
. - Retrieve the value at index
1
.
Here's what happens at each step:
-
Append
2
: The sequence is[2]
. The segment tree is updated to have a root node representing this value. -
Multiply all elements by
3
: Instead of multiplying the single element directly, the root node'smul
value is updated to3
. The sequence is conceptually[6]
, but no computation is done yet. -
Add
4
to all elements: Similarly, the root node'sadd
value is updated to4
. The sequence should be[10]
now, but again, no operations are applied yet. -
Append
6
: The sequence now is[10, 6]
, with6
to be added at the end of the segment tree structure, increasing the sequence count. The root is split into two children to accommodate this change. -
Multiply all elements by
2
: The whole tree'smul
value is updated to2
, and theadd
value is appropriately adjusted considering the previous multiply operation. The sequence conceptually becomes[20, 12]
. -
Retrieve the value at index
0
: ThegetIndex
query now triggers the lazy propagation. The segment tree updates the value of the node representing index0
with themul
andadd
values, computing(2*3) * (2) + (4*2)
to return20
. -
Retrieve the value at index
1
: For index1
,getIndex
would compute(6*3) * (2) + (4*2)
and return44
.
At every operation that mutates the sequence (addAll
, multAll
), we update only the values and operations pending on the segment tree without recalculating the entire sequence. The getIndex
operation applies all pending operations that are on the path to the requested element. This lazy propagation and segmented representation grant efficiency, ensuring that querying an element's value after numerous addAll
and multAll
operations are still done quickly.
Solution Implementation
1MOD = int(1e9 + 7)
2
3
4class Node:
5 def __init__(self, start, end):
6 # Initializing the segment tree node
7 self.left = None # Left child
8 self.right = None # Right child
9 self.start = start # Start index of the segment
10 self.end = end # End index of the segment
11 self.mid = (start + end) >> 1 # Middle index of the segment
12 self.value = 0 # Value of node
13 self.add = 0 # Lazy addition value
14 self.mul = 1 # Lazy multiplication value
15
16
17class SegmentTree:
18 def __init__(self):
19 # Initialize segment tree with root node covering range [1, 1e5 + 1]
20 self.root = Node(1, int(1e5 + 1))
21
22 def modify_add(self, start, end, increment, node=None):
23 if start > end:
24 return
25 if node is None:
26 node = self.root
27 # If the current node's range is completely within the update range
28 if node.start >= start and node.end <= end:
29 node.value = (node.value + (node.end - node.start + 1) * increment) % MOD
30 node.add += increment
31 return
32 self.push_down(node)
33 # Update left child if the update range intersects it
34 if start <= node.mid:
35 self.modify_add(start, end, increment, node.left)
36 # Update right child if the update range intersects it
37 if end > node.mid:
38 self.modify_add(start, end, increment, node.right)
39 self.push_up(node)
40
41 def modify_mul(self, start, end, multiplier, node=None):
42 if start > end:
43 return
44 if node is None:
45 node = self.root
46 # If the current node's range is completely within the update range
47 if node.start >= start and node.end <= end:
48 node.value = (node.value * multiplier) % MOD
49 node.add = (node.add * multiplier) % MOD
50 node.mul = (node.mul * multiplier) % MOD
51 return
52 self.push_down(node)
53 # Update left child if the update range intersects it
54 if start <= node.mid:
55 self.modify_mul(start, end, multiplier, node.left)
56 # Update right child if the update range intersects it
57 if end > node.mid:
58 self.modify_mul(start, end, multiplier, node.right)
59 self.push_up(node)
60
61 def query(self, start, end, node=None):
62 if start > end:
63 return 0
64 if node is None:
65 node = self.root
66 # If the current node's range is completely within the query range
67 if node.start >= start and node.end <= end:
68 return node.value
69 self.push_down(node)
70 result = 0
71 # Query left child if the query range intersects it
72 if start <= node.mid:
73 result = (result + self.query(start, end, node.left)) % MOD
74 # Query right child if the query range intersects it
75 if end > node.mid:
76 result = (result + self.query(start, end, node.right)) % MOD
77 return result
78
79 def push_up(self, node):
80 # Push the updates up to the parent node
81 node.value = (node.left.value + node.right.value) % MOD
82
83 def push_down(self, node):
84 # Lazy propagation: push updates down to children nodes
85 if node.left is None:
86 node.left = Node(node.start, node.mid)
87 if node.right is None:
88 node.right = Node(node.mid + 1, node.end)
89 if node.add != 0 or node.mul != 1:
90 self.apply_updates(node.left, node.mul, node.add)
91 self.apply_updates(node.right, node.mul, node.add)
92 node.add = 0
93 node.mul = 1
94
95 def apply_updates(self, child, mul, add):
96 # Apply multiplication and addition updates to child nodes
97 child.value = (child.value * mul + (child.end - child.start + 1) * add) % MOD
98 child.add = (child.add * mul + add) % MOD
99 child.mul = (child.mul * mul) % MOD
100
101
102class Fancy:
103 def __init__(self):
104 self.size = 0 # Initializing the number of elements added
105 self.tree = SegmentTree() # New segment tree instance
106
107 def append(self, val: int) -> None:
108 # Appends a new element to the array
109 self.size += 1
110 self.tree.modify_add(self.size, self.size, val)
111
112 def add_all(self, increment: int) -> None:
113 # Adds an increment to all elements of the array
114 self.tree.modify_add(1, self.size, increment)
115
116 def mult_all(self, multiplier: int) -> None:
117 # Multiplies all elements of the array by multiplier
118 self.tree.modify_mul(1, self.size, multiplier)
119
120 def get_index(self, index: int) -> int:
121 # Returns the element at the given index
122 return -1 if index >= self.size else self.tree.query(index + 1, index + 1)
123
124
125# Usage example:
126# fancy = Fancy()
127# fancy.append(val)
128# fancy.add_all(inc)
129# fancy.mult_all(m)
130# result = fancy.get_index(idx)
131
1class Node {
2 Node left;
3 Node right;
4 int start;
5 int end;
6 int mid;
7 long value; // Segment value with lazy propagation of additions and multiplication
8 long addLazy; // Lazy value for range addition
9 long multLazy = 1; // Lazy value for range multiplication, initialized to 1 (neutral for multiplication)
10
11 public Node(int start, int end) {
12 this.start = start;
13 this.end = end;
14 this.mid = (start + end) >> 1; // Midpoint calculation using bitwise shift for efficiency
15 }
16}
17
18class SegmentTree {
19 private Node root = new Node(1, (int) 1e5 + 1); // Initialize the tree with 10^5 elements
20 private static final int MOD = (int) 1e9 + 7; // Large prime for modulo operation
21
22 // Empty constructor for the SegmentTree class
23 public SegmentTree() {
24 }
25
26 // Public method to perform range addition
27 public void modifyAdd(int start, int end, int increment) {
28 modifyAdd(start, end, increment, root);
29 }
30
31 // Helper method to perform range addition
32 private void modifyAdd(int start, int end, int increment, Node node) {
33 if (start > end) {
34 return;
35 }
36 if (node.start >= start && node.end <= end) {
37 node.value = (node.value + (long) (node.end - node.start + 1) * increment) % MOD;
38 node.addLazy = (node.addLazy + increment) % MOD;
39 return;
40 }
41 pushDown(node);
42 if (start <= node.mid) {
43 modifyAdd(start, end, increment, node.left);
44 }
45 if (end > node.mid) {
46 modifyAdd(start, end, increment, node.right);
47 }
48 pushUp(node);
49 }
50
51 // Public method to perform range multiplication
52 public void modifyMul(int start, int end, int multiplier) {
53 modifyMul(start, end, multiplier, root);
54 }
55
56 // Helper method to perform range multiplication
57 private void modifyMul(int start, int end, int multiplier, Node node) {
58 if (start > end) {
59 return;
60 }
61 if (node.start >= start && node.end <= end) {
62 node.value = (node.value * multiplier) % MOD;
63 node.addLazy = (node.addLazy * multiplier) % MOD;
64 node.multLazy = (node.multLazy * multiplier) % MOD;
65 return;
66 }
67 pushDown(node);
68 if (start <= node.mid) {
69 modifyMul(start, end, multiplier, node.left);
70 }
71 if (end > node.mid) {
72 modifyMul(start, end, multiplier, node.right);
73 }
74 pushUp(node);
75 }
76
77 // Public method to query the sum in a range
78 public int query(int start, int end) {
79 return query(start, end, root);
80 }
81
82 // Helper method to query the sum in a range
83 private int query(int start, int end, Node node) {
84 if (start > end) {
85 return 0;
86 }
87 if (node.start >= start && node.end <= end) {
88 return (int) node.value;
89 }
90 pushDown(node);
91 int total = 0;
92 if (start <= node.mid) {
93 total = (total + query(start, end, node.left)) % MOD;
94 }
95 if (end > node.mid) {
96 total = (total + query(start, end, node.right)) % MOD;
97 }
98 return total;
99 }
100
101 // Method to propagate the value from parent to children after lazy updates
102 private void pushUp(Node node) {
103 node.value = (node.left.value + node.right.value) % MOD;
104 }
105
106 // Method to apply lazy updates to the current segment
107 private void pushDown(Node node) {
108 if (node.left == null) {
109 node.left = new Node(node.start, node.mid);
110 }
111 if (node.right == null) {
112 node.right = new Node(node.mid + 1, node.end);
113 }
114 if (node.addLazy != 0 || node.multLazy != 1) {
115 Node left = node.left, right = node.right;
116 left.value = (left.value * node.multLazy + (long) (left.end - left.start + 1) * node.addLazy) % MOD;
117 right.value = (right.value * node.multLazy + (long) (right.end - right.start + 1) * node.addLazy) % MOD;
118 left.addLazy = (left.addLazy * node.multLazy + node.addLazy) % MOD;
119 right.addLazy = (right.addLazy * node.multLazy + node.addLazy) % MOD;
120 left.multLazy = (left.multLazy * node.multLazy) % MOD;
121 right.multLazy = (right.multLazy * node.multLazy) % MOD;
122 node.addLazy = 0;
123 node.multLazy = 1;
124 }
125 }
126}
127
128class Fancy {
129 private int size; // Tracks the number of elements appended
130 private SegmentTree tree = new SegmentTree();
131
132 // Empty constructor for the Fancy class
133 public Fancy() {
134 }
135
136 // Append a new value to the Fancy object
137 public void append(int val) {
138 size++;
139 tree.modifyAdd(size, size, val);
140 }
141
142 // Add the increment to all elements
143 public void addAll(int increment) {
144 tree.modifyAdd(1, size, increment);
145 }
146
147 // Multiply all elements by the given multiplier
148 public void multAll(int multiplier) {
149 tree.modifyMul(1, size, multiplier);
150 }
151
152 // Get the element at the given index
153 public int getIndex(int index) {
154 return index >= size ? -1 : tree.query(index + 1, index + 1);
155 }
156}
157
158/**
159 * Your Fancy object will be instantiated and called as such:
160 * Fancy obj = new Fancy();
161 * obj.append(val);
162 * obj.addAll(inc);
163 * obj.multAll(m);
164 * int param_4 = obj.getIndex(idx);
165 */
166
1const int MOD = 1e9 + 7;
2
3// Definition of the Segment Tree Node
4class SegmentTreeNode {
5public:
6 SegmentTreeNode* left;
7 SegmentTreeNode* right;
8 int start;
9 int end;
10 int mid;
11 long long value;
12 long long lazyAdd;
13 long long lazyMul;
14
15 // Node constructor
16 SegmentTreeNode(int start, int end) {
17 this->start = start;
18 this->end = end;
19 this->mid = (start + end) >> 1; // Midpoint for dividing the range
20 this->left = this->right = nullptr;
21 value = lazyAdd = 0;
22 lazyMul = 1;
23 }
24};
25
26// Definition of the Segment Tree
27class SegmentTree {
28private:
29 SegmentTreeNode* root;
30
31public:
32 // SegmentTree constructor
33 SegmentTree() {
34 root = new SegmentTreeNode(1, 1e5 + 1);
35 }
36
37 // Public method to perform range addition
38 void modifyAdd(int start, int end, int increment) {
39 modifyAdd(start, end, increment, root);
40 }
41
42 // Helper method to perform range addition
43 void modifyAdd(int start, int end, int increment, SegmentTreeNode* node) {
44 if (start > end) return;
45 if (node->start >= start && node->end <= end) {
46 node->value = (node->value + (node->end - node->start + 1) * (long long)increment) % MOD;
47 node->lazyAdd = (node->lazyAdd + increment) % MOD;
48 return;
49 }
50 pushDown(node);
51 if (start <= node->mid) modifyAdd(start, end, increment, node->left);
52 if (end > node->mid) modifyAdd(start, end, increment, node->right);
53 pushUp(node);
54 }
55
56 // Public method to perform range multiplication
57 void modifyMul(int start, int end, int multiplier) {
58 modifyMul(start, end, multiplier, root);
59 }
60
61 // Helper method to perform range multiplication
62 void modifyMul(int start, int end, int multiplier, SegmentTreeNode* node) {
63 if (start > end) return;
64 if (node->start >= start && node->end <= end) {
65 node->value = (node->value * (long long)multiplier) % MOD;
66 node->lazyAdd = (node->lazyAdd * (long long)multiplier) % MOD;
67 node->lazyMul = (node->lazyMul * (long long)multiplier) % MOD;
68 return;
69 }
70 pushDown(node);
71 if (start <= node->mid) modifyMul(start, end, multiplier, node->left);
72 if (end > node->mid) modifyMul(start, end, multiplier, node->right);
73 pushUp(node);
74 }
75
76 // Public method to query the sum in a given range
77 int query(int start, int end) {
78 return query(start, end, root);
79 }
80
81 // Helper method to query the sum in a given range
82 int query(int start, int end, SegmentTreeNode* node) {
83 if (start > end) return 0;
84 if (node->start >= start && node->end <= end) return node->value;
85 pushDown(node);
86 long long sum = 0;
87 if (start <= node->mid) sum = (sum + query(start, end, node->left)) % MOD;
88 if (end > node->mid) sum = (sum + query(start, end, node->right)) % MOD;
89 return (int)sum;
90 }
91
92 // Method to update the parent node based on the values of its children
93 void pushUp(SegmentTreeNode* node) {
94 node->value = (node->left->value + node->right->value) % MOD;
95 }
96
97 // Method to propagate the lazy values to the children nodes
98 void pushDown(SegmentTreeNode* node) {
99 // Create children if they don't exist
100 if (!node->left) node->left = new SegmentTreeNode(node->start, node->mid);
101 if (!node->right) node->right = new SegmentTreeNode(node->mid + 1, node->end);
102
103 // Propagate and combine lazy values: multiplication first, then addition
104 if (node->lazyAdd || node->lazyMul != 1) {
105 // Apply lazy values to children nodes
106 applyLazy(node->left, node->lazyMul, node->lazyAdd);
107 applyLazy(node->right, node->lazyMul, node->lazyAdd);
108
109 // Reset lazy values in the parent node after propagation
110 node->lazyAdd = 0;
111 node->lazyMul = 1;
112 }
113 }
114
115 // Helper method to apply lazy values to a node
116 void applyLazy(SegmentTreeNode* node, long long mul, long long add) {
117 node->value = (node->value * mul + (node->end - node->start + 1) * add) % MOD;
118 node->lazyAdd = (node->lazyAdd * mul + add) % MOD;
119 node->lazyMul = (node->lazyMul * mul) % MOD;
120 }
121};
122
123// Fancy class with operations such as append, addAll, multAll, and getIndex
124class Fancy {
125public:
126 int size; // Size of the sequence
127 SegmentTree* tree;
128
129 // Fancy constructor
130 Fancy() {
131 size = 0;
132 tree = new SegmentTree();
133 }
134
135 // Append a value to the sequence
136 void append(int val) {
137 ++size;
138 tree->modifyAdd(size, size, val);
139 }
140
141 // Add an increment to all elements of the sequence
142 void addAll(int inc) {
143 tree->modifyAdd(1, size, inc);
144 }
145
146 // Multiply all elements of the sequence by a multiplier
147 void multAll(int m) {
148 tree->modifyMul(1, size, m);
149 }
150
151 // Get the element at a specific index of the sequence
152 int getIndex(int idx) {
153 if (idx >= size) return -1; // If the index is out of bounds, return -1
154 return tree->query(idx + 1, idx + 1); // Note: segment tree uses 1-based indexing
155 }
156};
157
158// Example of how the Fancy class objects would be used (not part of the code to be executed)
159/*
160Fancy* obj = new Fancy();
161obj->append(val);
162obj->addAll(inc);
163obj->multAll(m);
164int result = obj->getIndex(idx);
165*/
166
1const MOD: number = 1e9 + 7;
2
3// Definition of the Segment Tree Node
4class SegmentTreeNode {
5 public left: SegmentTreeNode | null;
6 public right: SegmentTreeNode | null;
7 public start: number;
8 public end: number;
9 public mid: number;
10 public value: number;
11 public lazyAdd: number;
12 public lazyMul: number;
13
14 constructor(start: number, end: number) {
15 this.start = start;
16 this.end = end;
17 this.mid = start + end >> 1; // Midpoint for dividing the range
18 this.left = this.right = null;
19 this.value = 0;
20 this.lazyAdd = 0;
21 this.lazyMul = 1;
22 }
23}
24
25let segmentTreeRoot: SegmentTreeNode = new SegmentTreeNode(1, 1e5 + 1);
26
27function modifyAdd(start: number, end: number, increment: number, node: SegmentTreeNode = segmentTreeRoot): void {
28 if (start > end) return;
29 if (node.start >= start && node.end <= end) {
30 node.value = (node.value + (node.end - node.start + 1) * increment) % MOD;
31 node.lazyAdd = (node.lazyAdd + increment) % MOD;
32 return;
33 }
34 pushDown(node);
35 if (start <= node.mid) modifyAdd(start, end, increment, node.left!);
36 if (end > node.mid) modifyAdd(start, end, increment, node.right!);
37 pushUp(node);
38}
39
40function modifyMul(start: number, end: number, multiplier: number, node: SegmentTreeNode = segmentTreeRoot): void {
41 if (start > end) return;
42 if (node.start >= start && node.end <= end) {
43 node.value = node.value * multiplier % MOD;
44 node.lazyAdd = node.lazyAdd * multiplier % MOD;
45 node.lazyMul = node.lazyMul * multiplier % MOD;
46 return;
47 }
48 pushDown(node);
49 if (start <= node.mid) modifyMul(start, end, multiplier, node.left!);
50 if (end > node.mid) modifyMul(start, end, multiplier, node.right!);
51 pushUp(node);
52}
53
54function query(start: number, end: number, node: SegmentTreeNode = segmentTreeRoot): number {
55 if (start > end) return 0;
56 if (node.start >= start && node.end <= end) return node.value;
57 pushDown(node);
58 let sum: number = 0;
59 if (start <= node.mid) sum = (sum + query(start, end, node.left!)) % MOD;
60 if (end > node.mid) sum = (sum + query(start, end, node.right!)) % MOD;
61 return sum;
62}
63
64function pushUp(node: SegmentTreeNode): void {
65 node.value = (node.left!.value + node.right!.value) % MOD;
66}
67
68function pushDown(node: SegmentTreeNode): void {
69 if (!node.left) node.left = new SegmentTreeNode(node.start, node.mid);
70 if (!node.right) node.right = new SegmentTreeNode(node.mid + 1, node.end);
71 if (node.lazyAdd !== 0 || node.lazyMul !== 1) {
72 applyLazy(node.left, node.lazyMul, node.lazyAdd);
73 applyLazy(node.right, node.lazyMul, node.lazyAdd);
74 node.lazyAdd = 0;
75 node.lazyMul = 1;
76 }
77}
78
79function applyLazy(node: SegmentTreeNode, mul: number, add: number): void {
80 node.value = (node.value * mul + (node.end - node.start + 1) * add) % MOD;
81 node.lazyAdd = (node.lazyAdd * mul + add) % MOD;
82 node.lazyMul *= mul;
83 node.lazyMul %= MOD;
84}
85
86// Global variables for the Fancy class functions
87let sequenceSize: number = 0;
88
89function append(val: number): void {
90 sequenceSize++;
91 modifyAdd(sequenceSize, sequenceSize, val);
92}
93
94function addAll(inc: number): void {
95 modifyAdd(1, sequenceSize, inc);
96}
97
98function multAll(m: number): void {
99 modifyMul(1, sequenceSize, m);
100}
101
102function getIndex(idx: number): number {
103 if (idx >= sequenceSize) return -1;
104 return query(idx + 1, idx + 1);
105}
106
Time and Space Complexity
The provided code implements a segment tree to manage a dynamic array with support for range additions, multiplications, and retrieval of an element by its index.
Time Complexity
-
SegmentTree Construction: The segment tree is lazily constructed. Each node is only created when needed. Thus, the initial construction is O(1).
-
modifyAdd (Adding to a Range): It has a complexity of O(log n) where n is the range of the segment tree because the function recursively splits the range [l, r] often in two.
-
modifyMul (Multiplying to a Range): Similar to modifyAdd, modifyMul affects nodes along the depth of the segment tree, taking O(log n) for each call.
-
query (Retrieving an Element): The time complexity is O(log n) since it traverses from root to leaf to find the value at a specific index.
Overall, each operation—append, addAll, multAll, and getIndex—performed on the Fancy
class is utilizing the above operations, hence each has a O(log n) time complexity.
Space Complexity
-
Overall Space Complexity: The space complexity is O(n) for storing
n
elements in the worst case where all nodes in the tree are utilized. -
SegmentTree Node Storage: Each SegmentTree node has constant space for attributes, so the space complexity due to a single node is O(1). But since a new node is created for each unique segment during operations, the total space used by all nodes can reach up to O(n).
-
Lazy Propagation: Since the tree utilizes lazy propagation for adding and multiplying, there's an additional constant space used for each node to store the
add
andmul
values, but it doesn't change the overall O(n) space complexity.
In conclusion, the operations are efficient in terms of time especially for range updates and queries, but can potentially use significant space depending on the number of elements and operations performed.
Learn more about how to find time and space complexity quickly using problem constraints.
What data structure does Breadth-first search typically uses to store intermediate states?
Recommended Readings
Segment Tree Faster Range Queries For this article we want to introduce the idea of a Segment Tree Segment Trees allow us to quickly perform range queries as well as range updates Suppose we have an array and we want to know the sum of a particular range of numbers as well
Math for Technical Interviews How much math do I need to know for technical interviews The short answer is about high school level math Computer science is often associated with math and some universities even place their computer science department under the math faculty However the reality is that you
LeetCode Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way we
Want a Structured Path to Master System Design Too? Don’t Miss This!