2817. Minimum Absolute Difference Between Elements With Constraint
Problem Description
You have an array of integers nums
(0-indexed) and an integer x
. Your task is to find the minimum absolute difference between any two elements in the array, with the constraint that these two elements must be at least x
indices apart.
More specifically:
- You need to find two indices
i
andj
whereabs(i - j) >= x
(the indices are at leastx
positions apart) - Among all such valid pairs, find the one where
abs(nums[i] - nums[j])
is minimized - Return this minimum absolute difference
For example, if you have an array and x = 3
, you can only compare elements that are at least 3 positions apart from each other in the array. You want to find which pair of such elements has the smallest absolute difference between their values.
The solution uses an ordered set (SortedList) to efficiently track elements that are at least x
positions away from the current position. As we iterate through the array starting from index x
, we:
- Add
nums[i - x]
to the sorted list (this element is exactlyx
positions behind) - Use binary search to find where
nums[i]
would fit in the sorted list - Check the closest elements (one just greater than or equal to
nums[i]
, and one just less thannums[i]
) to find the minimum absolute difference - Update the answer with the minimum difference found so far
Intuition
The key insight is that for any element at index i
, we need to find the element with minimum absolute difference among all elements that are at least x
indices away. A naive approach would check all valid pairs, taking O(n²)
time.
To optimize this, we can observe that when we're at index i
, all elements from indices 0
to i - x
are valid candidates (they're at least x
positions behind). As we move forward in the array, more elements become valid candidates.
The critical realization is that to minimize the absolute difference abs(nums[i] - nums[j])
, we need to find the element closest in value to nums[i]
. In a sorted collection, the closest element to any value must be either:
- The smallest element greater than or equal to the target value
- The largest element less than the target value
This leads us to maintain a sorted collection of all valid elements (those at least x
indices away). When processing element at index i
:
- We add
nums[i - x]
to our collection (it just became valid, being exactlyx
positions behind) - We use binary search to quickly find where
nums[i]
would fit in this sorted collection - We check the elements immediately before and after this position - these are the closest values to
nums[i]
- The minimum of these differences gives us the best possible match for the current element
By maintaining this sorted structure and using binary search, we reduce the time complexity from O(n²)
to O(n log n)
, making the solution efficient even for large inputs.
Learn more about Binary Search patterns.
Solution Approach
We use an ordered set (implemented as SortedList
in Python) to maintain elements that are at least x
indices away from the current position. This data structure allows us to:
- Insert elements in
O(log n)
time while maintaining sorted order - Perform binary search in
O(log n)
time
The algorithm works as follows:
-
Initialize: Create an empty
SortedList
and set the answer to infinity (inf
). -
Iterate through valid positions: Start from index
i = x
(the first position where we can have a valid pair) and go through the rest of the array. -
Add valid candidates: For each position
i
, addnums[i - x]
to the sorted list. This element is exactlyx
positions behind the current index, making it a valid candidate for comparison. -
Find closest elements using binary search: Use
bisect_left(sl, nums[i])
to find the insertion positionj
wherenums[i]
would fit in the sorted list. This gives us:sl[j]
- the smallest element greater than or equal tonums[i]
(ifj < len(sl)
)sl[j - 1]
- the largest element less thannums[i]
(ifj > 0
)
-
Update minimum difference:
- If there's an element at position
j
(not out of bounds), calculatesl[j] - nums[i]
- If there's an element at position
j - 1
(whenj > 0
), calculatenums[i] - sl[j - 1]
- Update
ans
with the minimum of these differences
- If there's an element at position
-
Return result: After processing all elements, return the minimum absolute difference found.
The time complexity is O(n log n)
where n
is the length of the array, as we perform n - x
insertions and binary searches, each taking O(log n)
time. The space complexity is O(n)
for storing elements in the sorted list.
Ready to land your dream job?
Unlock your dream job with a 3-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through the solution with a concrete example to understand how it works.
Example: nums = [1, 5, 3, 19, 18, 25]
, x = 3
We need to find the minimum absolute difference between elements that are at least 3 indices apart.
Step-by-step execution:
Initialization:
sl = SortedList()
(empty)ans = inf
Iteration 1: i = 3
- Current element:
nums[3] = 19
- Add to sorted list:
nums[3 - 3] = nums[0] = 1
sl = [1]
- Binary search for 19 in
sl
:j = bisect_left([1], 19) = 1
- Check positions:
j = 1
is out of bounds (sl has only 1 element)j - 1 = 0
:nums[3] - sl[0] = 19 - 1 = 18
- Update:
ans = min(inf, 18) = 18
Iteration 2: i = 4
- Current element:
nums[4] = 18
- Add to sorted list:
nums[4 - 3] = nums[1] = 5
sl = [1, 5]
(sorted)- Binary search for 18 in
sl
:j = bisect_left([1, 5], 18) = 2
- Check positions:
j = 2
is out of bounds (sl has only 2 elements)j - 1 = 1
:nums[4] - sl[1] = 18 - 5 = 13
- Update:
ans = min(18, 13) = 13
Iteration 3: i = 5
- Current element:
nums[5] = 25
- Add to sorted list:
nums[5 - 3] = nums[2] = 3
sl = [1, 3, 5]
(sorted)- Binary search for 25 in
sl
:j = bisect_left([1, 3, 5], 25) = 3
- Check positions:
j = 3
is out of bounds (sl has only 3 elements)j - 1 = 2
:nums[5] - sl[2] = 25 - 5 = 20
- Update:
ans = min(13, 20) = 13
Result: The minimum absolute difference is 13, achieved between nums[1] = 5
and nums[4] = 18
(indices are 3 apart).
This example illustrates how the sorted list grows as we progress through the array, always containing elements that are valid candidates (at least x
positions behind). The binary search efficiently finds the closest values to compare with the current element.
Solution Implementation
1from typing import List
2from sortedcontainers import SortedList
3from bisect import bisect_left
4from math import inf
5
6
7class Solution:
8 def minAbsoluteDifference(self, nums: List[int], x: int) -> int:
9 """
10 Find the minimum absolute difference between nums[i] and nums[j]
11 where |i - j| >= x.
12
13 Args:
14 nums: List of integers
15 x: Minimum index difference required
16
17 Returns:
18 Minimum absolute difference between valid pairs
19 """
20 # Initialize a sorted list to maintain elements in sorted order
21 sorted_list = SortedList()
22
23 # Initialize minimum difference to infinity
24 min_diff = inf
25
26 # Iterate through the array starting from index x
27 # This ensures we can always look back at least x positions
28 for current_idx in range(x, len(nums)):
29 # Add the element that is x positions behind current position
30 # This element becomes a valid candidate for pairing
31 sorted_list.add(nums[current_idx - x])
32
33 # Find the position where current element would be inserted
34 # in the sorted list (binary search)
35 insert_pos = bisect_left(sorted_list, nums[current_idx])
36
37 # Check the element at or after the insertion point (if exists)
38 # This gives us the smallest element >= nums[current_idx]
39 if insert_pos < len(sorted_list):
40 min_diff = min(min_diff, sorted_list[insert_pos] - nums[current_idx])
41
42 # Check the element just before the insertion point (if exists)
43 # This gives us the largest element < nums[current_idx]
44 if insert_pos > 0:
45 min_diff = min(min_diff, nums[current_idx] - sorted_list[insert_pos - 1])
46
47 return min_diff
48
1class Solution {
2 public int minAbsoluteDifference(List<Integer> nums, int x) {
3 // TreeMap to store elements that are at least x positions away from current index
4 TreeMap<Integer, Integer> treeMap = new TreeMap<>();
5
6 // Initialize answer with a large value (2^30)
7 int minDifference = 1 << 30;
8
9 // Iterate through the list starting from index x
10 for (int i = x; i < nums.size(); i++) {
11 // Add the element that is exactly x positions behind current index
12 // merge() increments the count if key exists, otherwise sets count to 1
13 treeMap.merge(nums.get(i - x), 1, Integer::sum);
14
15 // Find the smallest element >= current element (ceiling)
16 Integer ceilingKey = treeMap.ceilingKey(nums.get(i));
17 if (ceilingKey != null) {
18 // Update minimum difference if ceiling provides smaller difference
19 minDifference = Math.min(minDifference, ceilingKey - nums.get(i));
20 }
21
22 // Find the largest element <= current element (floor)
23 Integer floorKey = treeMap.floorKey(nums.get(i));
24 if (floorKey != null) {
25 // Update minimum difference if floor provides smaller difference
26 minDifference = Math.min(minDifference, nums.get(i) - floorKey);
27 }
28 }
29
30 return minDifference;
31 }
32}
33
1class Solution {
2public:
3 int minAbsoluteDifference(vector<int>& nums, int x) {
4 // Initialize the minimum difference with a large value (2^30)
5 int minDiff = 1 << 30;
6
7 // Use a multiset to maintain sorted elements that are at least x positions apart
8 multiset<int> validElements;
9
10 // Start from index x, ensuring we can look back at least x positions
11 for (int i = x; i < nums.size(); ++i) {
12 // Add the element that is exactly x positions behind current index
13 // This ensures all elements in the set are at least x positions apart from nums[i]
14 validElements.insert(nums[i - x]);
15
16 // Find the smallest element >= nums[i] in the set
17 auto lowerBoundIter = validElements.lower_bound(nums[i]);
18
19 // If such an element exists, update minimum difference
20 if (lowerBoundIter != validElements.end()) {
21 minDiff = min(minDiff, *lowerBoundIter - nums[i]);
22 }
23
24 // Check the largest element < nums[i] (previous element in the set)
25 if (lowerBoundIter != validElements.begin()) {
26 --lowerBoundIter;
27 minDiff = min(minDiff, nums[i] - *lowerBoundIter);
28 }
29 }
30
31 return minDiff;
32 }
33};
34
1// Solution to find minimum absolute difference between array elements with index difference >= x
2function minAbsoluteDifference(nums: number[], x: number): number {
3 // Initialize the tree multiset for maintaining sorted elements
4 const multiSet = createTreeMultiSet();
5 const INF = 1 << 30; // Large value representing infinity
6 let minDiff = INF;
7
8 // Process elements starting from index x
9 for (let i = x; i < nums.length; ++i) {
10 // Add element that is x positions behind current element
11 addToMultiSet(multiSet, nums[i - x]);
12
13 // Find ceiling (smallest element >= nums[i])
14 const ceilingValue = getCeiling(multiSet, nums[i]);
15 // Find floor (largest element <= nums[i])
16 const floorValue = getFloor(multiSet, nums[i]);
17
18 // Update minimum difference with ceiling if exists
19 if (ceilingValue !== undefined) {
20 minDiff = Math.min(minDiff, ceilingValue - nums[i]);
21 }
22 // Update minimum difference with floor if exists
23 if (floorValue !== undefined) {
24 minDiff = Math.min(minDiff, nums[i] - floorValue);
25 }
26 }
27
28 return minDiff;
29}
30
31// Type definition for comparison function
32type Compare<T> = (lhs: T, rhs: T) => number;
33
34// Red-Black Tree Node structure
35interface RBTreeNode<T = number> {
36 data: T; // Node value
37 count: number; // Count for duplicate values
38 left: RBTreeNode<T> | null; // Left child
39 right: RBTreeNode<T> | null; // Right child
40 parent: RBTreeNode<T> | null; // Parent node
41 color: number; // 0 = red, 1 = black
42}
43
44// Red-Black Tree structure
45interface RBTree<T> {
46 root: RBTreeNode<T> | null; // Root of the tree
47 lt: (l: T, r: T) => boolean; // Less than comparison function
48}
49
50// Tree-based MultiSet structure
51interface TreeMultiSet<T = number> {
52 _size: number; // Total number of elements
53 tree: RBTree<T>; // Underlying RB-tree
54 compare: Compare<T>; // Comparison function
55}
56
57// Create a new RB-tree node
58function createRBTreeNode<T>(data: T): RBTreeNode<T> {
59 return {
60 data: data,
61 left: null,
62 right: null,
63 parent: null,
64 color: 0, // New nodes are red by default
65 count: 1 // Initialize count to 1
66 };
67}
68
69// Get sibling of a node
70function getSibling<T>(node: RBTreeNode<T>): RBTreeNode<T> | null {
71 if (!node.parent) return null;
72 return isOnLeft(node) ? node.parent.right : node.parent.left;
73}
74
75// Check if node is left child of its parent
76function isOnLeft<T>(node: RBTreeNode<T>): boolean {
77 return node === node.parent!.left;
78}
79
80// Check if node has at least one red child
81function hasRedChild<T>(node: RBTreeNode<T>): boolean {
82 return Boolean(node.left && node.left.color === 0) ||
83 Boolean(node.right && node.right.color === 0);
84}
85
86// Create a new RB-tree
87function createRBTree<T>(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)): RBTree<T> {
88 return {
89 root: null,
90 lt: (l: T, r: T) => compare(l, r) < 0
91 };
92}
93
94// Left rotation for RB-tree balancing
95function rotateLeft<T>(tree: RBTree<T>, pt: RBTreeNode<T>): void {
96 const rightChild = pt.right!;
97 pt.right = rightChild.left;
98
99 if (pt.right) pt.right.parent = pt;
100 rightChild.parent = pt.parent;
101
102 if (!pt.parent) {
103 tree.root = rightChild;
104 } else if (pt === pt.parent.left) {
105 pt.parent.left = rightChild;
106 } else {
107 pt.parent.right = rightChild;
108 }
109
110 rightChild.left = pt;
111 pt.parent = rightChild;
112}
113
114// Right rotation for RB-tree balancing
115function rotateRight<T>(tree: RBTree<T>, pt: RBTreeNode<T>): void {
116 const leftChild = pt.left!;
117 pt.left = leftChild.right;
118
119 if (pt.left) pt.left.parent = pt;
120 leftChild.parent = pt.parent;
121
122 if (!pt.parent) {
123 tree.root = leftChild;
124 } else if (pt === pt.parent.left) {
125 pt.parent.left = leftChild;
126 } else {
127 pt.parent.right = leftChild;
128 }
129
130 leftChild.right = pt;
131 pt.parent = leftChild;
132}
133
134// Swap colors of two nodes
135function swapColor<T>(node1: RBTreeNode<T>, node2: RBTreeNode<T>): void {
136 const temp = node1.color;
137 node1.color = node2.color;
138 node2.color = temp;
139}
140
141// Swap data of two nodes
142function swapData<T>(node1: RBTreeNode<T>, node2: RBTreeNode<T>): void {
143 const temp = node1.data;
144 node1.data = node2.data;
145 node2.data = temp;
146}
147
148// Fix RB-tree violations after insertion
149function fixAfterInsert<T>(tree: RBTree<T>, pt: RBTreeNode<T>): void {
150 let parent = null;
151 let grandParent = null;
152
153 // Continue fixing while violations exist
154 while (pt !== tree.root && pt.color !== 1 && pt.parent?.color === 0) {
155 parent = pt.parent;
156 grandParent = pt.parent.parent;
157
158 // Case A: Parent is left child of grandparent
159 if (parent === grandParent?.left) {
160 const uncle = grandParent.right;
161
162 // Case 1: Uncle is red - only recoloring needed
163 if (uncle && uncle.color === 0) {
164 grandParent.color = 0;
165 parent.color = 1;
166 uncle.color = 1;
167 pt = grandParent;
168 } else {
169 // Case 2: Node is right child - left rotation needed
170 if (pt === parent.right) {
171 rotateLeft(tree, parent);
172 pt = parent;
173 parent = pt.parent;
174 }
175
176 // Case 3: Node is left child - right rotation needed
177 rotateRight(tree, grandParent);
178 swapColor(parent!, grandParent);
179 pt = parent!;
180 }
181 } else {
182 // Case B: Parent is right child of grandparent
183 const uncle = grandParent!.left;
184
185 // Case 1: Uncle is red - only recoloring needed
186 if (uncle != null && uncle.color === 0) {
187 grandParent!.color = 0;
188 parent.color = 1;
189 uncle.color = 1;
190 pt = grandParent!;
191 } else {
192 // Case 2: Node is left child - right rotation needed
193 if (pt === parent.left) {
194 rotateRight(tree, parent);
195 pt = parent;
196 parent = pt.parent;
197 }
198
199 // Case 3: Node is right child - left rotation needed
200 rotateLeft(tree, grandParent!);
201 swapColor(parent!, grandParent!);
202 pt = parent!;
203 }
204 }
205 }
206 // Root must always be black
207 tree.root!.color = 1;
208}
209
210// Find BST replacement node for deletion
211function findBSTReplacement<T>(x: RBTreeNode<T>): RBTreeNode<T> | null {
212 // When node has 2 children, find inorder successor
213 if (x.left && x.right) return findSuccessor(x.right);
214 // When leaf node
215 if (!x.left && !x.right) return null;
216 // When single child exists
217 return x.left ?? x.right;
218}
219
220// Find inorder successor (leftmost node in right subtree)
221function findSuccessor<T>(x: RBTreeNode<T>): RBTreeNode<T> {
222 let temp = x;
223 while (temp.left) temp = temp.left;
224 return temp;
225}
226
227// Delete a node from RB-tree
228function deleteNode<T>(tree: RBTree<T>, v: RBTreeNode<T>): void {
229 const u = findBSTReplacement(v);
230
231 // Check if both u and v are black
232 const uvBlack = (u === null || u.color === 1) && v.color === 1;
233 const parent = v.parent!;
234
235 if (!u) {
236 // u is null, therefore v is a leaf
237 if (v === tree.root) {
238 tree.root = null;
239 } else {
240 if (uvBlack) {
241 // Both u and v are black - fix double black
242 fixDoubleBlack(tree, v);
243 } else {
244 // Either u or v is red - make sibling red if exists
245 const sibling = getSibling(v);
246 if (sibling) {
247 sibling.color = 0;
248 }
249 }
250 // Remove v from tree
251 if (isOnLeft(v)) {
252 parent.left = null;
253 } else {
254 parent.right = null;
255 }
256 }
257 return;
258 }
259
260 if (!v.left || !v.right) {
261 // v has exactly 1 child
262 if (v === tree.root) {
263 // v is root - replace with child's data
264 v.data = u.data;
265 v.left = v.right = null;
266 } else {
267 // Detach v and move u up
268 if (isOnLeft(v)) {
269 parent.left = u;
270 } else {
271 parent.right = u;
272 }
273 u.parent = parent;
274 if (uvBlack) {
275 fixDoubleBlack(tree, u);
276 } else {
277 u.color = 1; // Make u black
278 }
279 }
280 return;
281 }
282
283 // v has 2 children - swap with successor and recurse
284 swapData(u, v);
285 deleteNode(tree, u);
286}
287
288// Fix double black violation after deletion
289function fixDoubleBlack<T>(tree: RBTree<T>, x: RBTreeNode<T>): void {
290 if (x === tree.root) return; // Reached root
291
292 const sibling = getSibling(x);
293 const parent = x.parent!;
294
295 if (!sibling) {
296 // No sibling - push double black up
297 fixDoubleBlack(tree, parent);
298 } else {
299 if (sibling.color === 0) {
300 // Sibling is red
301 parent.color = 0;
302 sibling.color = 1;
303 if (isOnLeft(sibling)) {
304 rotateRight(tree, parent);
305 } else {
306 rotateLeft(tree, parent);
307 }
308 fixDoubleBlack(tree, x);
309 } else {
310 // Sibling is black
311 if (hasRedChild(sibling)) {
312 // Sibling has at least one red child
313 if (sibling.left && sibling.left.color === 0) {
314 if (isOnLeft(sibling)) {
315 // Left-left case
316 sibling.left.color = sibling.color;
317 sibling.color = parent.color;
318 rotateRight(tree, parent);
319 } else {
320 // Right-left case
321 sibling.left.color = parent.color;
322 rotateRight(tree, sibling);
323 rotateLeft(tree, parent);
324 }
325 } else {
326 if (isOnLeft(sibling)) {
327 // Left-right case
328 sibling.right!.color = parent.color;
329 rotateLeft(tree, sibling);
330 rotateRight(tree, parent);
331 } else {
332 // Right-right case
333 sibling.right!.color = sibling.color;
334 sibling.color = parent.color;
335 rotateLeft(tree, parent);
336 }
337 }
338 parent.color = 1;
339 } else {
340 // Sibling has two black children
341 sibling.color = 0;
342 if (parent.color === 1) {
343 fixDoubleBlack(tree, parent);
344 } else {
345 parent.color = 1;
346 }
347 }
348 }
349 }
350}
351
352// Insert a value into RB-tree
353function insertIntoTree<T>(tree: RBTree<T>, data: T): boolean {
354 // Search for insertion position
355 let parent = tree.root;
356 while (parent) {
357 if (tree.lt(data, parent.data)) {
358 if (!parent.left) break;
359 else parent = parent.left;
360 } else if (tree.lt(parent.data, data)) {
361 if (!parent.right) break;
362 else parent = parent.right;
363 } else break;
364 }
365
366 // Insert new node
367 const node = createRBTreeNode(data);
368 if (!parent) {
369 tree.root = node;
370 } else if (tree.lt(node.data, parent.data)) {
371 parent.left = node;
372 } else if (tree.lt(parent.data, node.data)) {
373 parent.right = node;
374 } else {
375 // Duplicate value - increment count
376 parent.count++;
377 return false;
378 }
379 node.parent = parent;
380 fixAfterInsert(tree, node);
381 return true;
382}
383
384// Find a node with given value in RB-tree
385function findInTree<T>(tree: RBTree<T>, data: T): RBTreeNode<T> | null {
386 let p = tree.root;
387 while (p) {
388 if (tree.lt(data, p.data)) {
389 p = p.left;
390 } else if (tree.lt(p.data, data)) {
391 p = p.right;
392 } else {
393 break;
394 }
395 }
396 return p ?? null;
397}
398
399// Create a new TreeMultiSet
400function createTreeMultiSet<T = number>(
401 collection: T[] | Compare<T> = [],
402 compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)
403): TreeMultiSet<T> {
404 // Handle overloaded parameters
405 if (typeof collection === 'function') {
406 compare = collection;
407 collection = [];
408 }
409
410 const multiSet: TreeMultiSet<T> = {
411 _size: 0,
412 compare: compare,
413 tree: createRBTree(compare)
414 };
415
416 // Add initial collection elements
417 for (const val of collection) {
418 addToMultiSet(multiSet, val);
419 }
420
421 return multiSet;
422}
423
424// Add value to multiset
425function addToMultiSet<T>(multiSet: TreeMultiSet<T>, val: T): boolean {
426 const successful = insertIntoTree(multiSet.tree, val);
427 multiSet._size++;
428 return successful;
429}
430
431// Get ceiling value (smallest value >= given value)
432function getCeiling<T>(multiSet: TreeMultiSet<T>, val: T): T | undefined {
433 let p = multiSet.tree.root;
434 let higher = null;
435
436 // Binary search for ceiling
437 while (p) {
438 if (multiSet.compare(p.data, val) >= 0) {
439 higher = p;
440 p = p.left;
441 } else {
442 p = p.right;
443 }
444 }
445 return higher?.data;
446}
447
448// Get floor value (largest value <= given value)
449function getFloor<T>(multiSet: TreeMultiSet<T>, val: T): T | undefined {
450 let p = multiSet.tree.root;
451 let lower = null;
452
453 // Binary search for floor
454 while (p) {
455 if (multiSet.compare(val, p.data) >= 0) {
456 lower = p;
457 p = p.right;
458 } else {
459 p = p.left;
460 }
461 }
462 return lower?.data;
463}
464
Time and Space Complexity
Time Complexity: O(n × log n)
The algorithm iterates through the array starting from index x
to len(nums)
, which gives us O(n - x) = O(n)
iterations. In each iteration:
sl.add(nums[i - x])
: Adding an element to a SortedList takesO(log n)
time due to the need to maintain sorted orderbisect_left(sl, nums[i])
: Binary search in the SortedList takesO(log n)
time- The comparison and update operations (
min
, array access) takeO(1)
time
Since we perform O(log n)
operations for each of the O(n)
iterations, the overall time complexity is O(n × log n)
.
Space Complexity: O(n)
The SortedList sl
can contain at most n - x
elements in the worst case (when x = 0
, it would contain all n
elements). Therefore, the space complexity is O(n)
for storing the SortedList. The remaining variables (ans
, i
, j
) use constant space O(1)
, which doesn't affect the overall space complexity.
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Off-by-One Error in Index Management
A common mistake is incorrectly calculating which elements are valid candidates for comparison. Developers might accidentally add nums[i - x + 1]
or nums[i - x - 1]
instead of nums[i - x]
, or start the loop from x - 1
or x + 1
instead of x
.
Why this happens: The constraint |i - j| >= x
can be confusing. When at index i
, we need elements at indices <= i - x
or >= i + x
. Since we're iterating forward, we only consider elements behind us.
Solution: Remember that when you're at index i
, the element at index i - x
is exactly x
positions behind, making it the newest valid candidate to add to the sorted list.
2. Forgetting to Handle Edge Cases in Binary Search
When using bisect_left
, developers might forget to check bounds before accessing sorted_list[insert_pos]
or sorted_list[insert_pos - 1]
, leading to IndexError.
Incorrect approach:
# This will crash if insert_pos equals len(sorted_list)
min_diff = min(min_diff, sorted_list[insert_pos] - nums[current_idx])
# This will crash if insert_pos equals 0
min_diff = min(min_diff, nums[current_idx] - sorted_list[insert_pos - 1])
Solution: Always check bounds before accessing array elements:
if insert_pos < len(sorted_list):
min_diff = min(min_diff, sorted_list[insert_pos] - nums[current_idx])
if insert_pos > 0:
min_diff = min(min_diff, nums[current_idx] - sorted_list[insert_pos - 1])
3. Using Wrong Data Structure
Using a regular list with manual sorting after each insertion (list.append()
followed by list.sort()
) instead of a proper ordered set implementation.
Why this is problematic: This increases time complexity from O(n log n) to O(n²) because sorting takes O(n) time for each of the n insertions.
Solution: Use SortedList
from sortedcontainers
or implement a balanced BST/heap-based solution that maintains sorted order efficiently.
4. Incorrect Difference Calculation
Computing abs(sorted_list[insert_pos] - nums[current_idx])
for both cases instead of considering the sign.
Why this matters: Since we know sorted_list[insert_pos] >= nums[current_idx]
and sorted_list[insert_pos - 1] < nums[current_idx]
, we can avoid the abs()
function by using:
sorted_list[insert_pos] - nums[current_idx]
for elements greater than or equal to currentnums[current_idx] - sorted_list[insert_pos - 1]
for elements less than current
This is both more efficient and clearer in intent.
5. Not Considering All Valid Pairs
Some might try to optimize by only adding elements to the sorted list when i >= 2*x
, thinking they need to wait until they can compare with elements both x
positions ahead and behind. This misses valid pairs where one element is near the beginning of the array.
Solution: Start adding elements to the sorted list as soon as i = x
, ensuring all valid pairs are considered.
What is the best way of checking if an element exists in an unsorted array once in terms of time complexity? Select the best that applies.
Recommended Readings
Binary Search Speedrun For each of the Speedrun questions you will be given a binary search related problem and a corresponding multiple choice question The multiple choice questions are related to the techniques and template s introduced in the binary search section It's recommended that you have gone through at
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https assets algo monster recursion jpg You first call Ben and ask
Want a Structured Path to Master System Design Too? Don’t Miss This!