3292. Minimum Number of Valid Strings to Form Target II
Problem Description
You are given an array of strings words
and a string target
.
A string x
is considered valid if it is a prefix of at least one string in the words
array. For example, if words = ["abc", "def"]
, then "a", "ab", "abc", "d", "de", "def" are all valid strings, but "b", "ac", "e" are not valid.
Your task is to find the minimum number of valid strings that can be concatenated together to form the target
string. The valid strings can be used multiple times and in any order.
If it's impossible to form the target
string using valid strings, return -1
.
For example:
- If
words = ["abc", "ab", "def"]
andtarget = "abcdef"
, you could use "abc" + "def" (2 valid strings) to form the target. - If
words = ["a", "abc"]
andtarget = "aaa"
, you could use "a" + "a" + "a" (3 valid strings) to form the target. - If
words = ["abc"]
andtarget = "def"
, it's impossible to form the target since no valid string can match any part of "def", so return-1
.
The problem requires finding the optimal (minimum) way to partition the target
string into segments where each segment is a valid string (prefix of some word in words
).
Intuition
The key insight is that we need to greedily match the longest possible prefix at each position to minimize the total number of strings used.
Think of it like jumping across a river using stepping stones. At each position in the target
string, we want to make the longest possible "jump" using a valid prefix. The longer each jump, the fewer total jumps we need.
For any position i
in the target string, we need to find the maximum length substring starting at i
that is a valid prefix of some word in words
. Let's call this length f(i)
. For example, if at position i
we can match prefixes of length 1, 2, and 5, then f(i) = 5
.
The challenge is efficiently finding f(i)
for each position. Since we're looking for prefixes, there's a monotonic property: if target[i..i+k]
is a valid prefix, then target[i..i+j]
is also valid for all j ≤ k
(because a prefix of a prefix is also a prefix). This monotonicity suggests we can use binary search to find the maximum matching length.
To quickly check if a substring is a valid prefix, we can use string hashing. We precompute hash values for all prefixes of words in words
and group them by length. Then, for any substring of target
, we can compute its hash value and check if it exists in our precomputed set in O(1)
time.
Once we can efficiently compute f(i)
for each position, the problem becomes a classic greedy jumping game: starting from position 0, at each step we can jump to any position within our current reach. We want to reach the end with minimum jumps. The strategy is to always extend our reach as far as possible before making the next jump.
The algorithm tracks:
last
: the position where we made our last jumpmx
: the farthest position we can reach from our current range- When we reach
last
, we must make another jump tomx
If at any point last == mx
and we haven't reached the end, it means we're stuck and cannot proceed further, so we return -1
.
Learn more about Segment Tree, Binary Search and Dynamic Programming patterns.
Solution Approach
The solution implements the intuition using string hashing, binary search, and greedy strategy. Let's walk through each component:
1. String Hashing Setup
First, we create a Hashing
class to efficiently compute hash values of any substring of target
:
- Uses polynomial rolling hash with base
13331
and modulo998244353
- Precomputes prefix hashes
h[i]
and powersp[i]
for the target string - The
query(l, r)
method returns the hash value oftarget[l-1..r-1]
inO(1)
time using the formula:(h[r] - h[l-1] * p[r-l+1]) % mod
2. Preprocessing Word Prefixes
We build a data structure to quickly check if a substring is a valid prefix:
s = [set() for _ in range(m + 1)] # s[i] contains hash values of all prefixes of length i
For each word in words
, we compute hash values of all its prefixes and store them in s
grouped by length:
- For word "abc", we store hash("a") in
s[1]
, hash("ab") ins[2]
, hash("abc") ins[3]
- This allows
O(1)
lookup to check if a substring of given length is a valid prefix
3. Binary Search for Maximum Match Length
The function f(i)
finds the maximum length of valid prefix starting at position i
:
def f(i: int) -> int:
l, r = 0, min(n - i, m) # search range: [0, min(remaining_length, max_word_length)]
while l < r:
mid = (l + r + 1) >> 1
sub = hashing.query(i + 1, i + mid) # get hash of target[i..i+mid-1]
if sub in s[mid]: # check if this substring is a valid prefix of length mid
l = mid # can match at least mid characters, try longer
else:
r = mid - 1 # cannot match mid characters, try shorter
return l
The binary search exploits the monotonic property: if we can match k
characters, we can also match any j < k
characters.
4. Greedy Jump Strategy
With f(i)
computed for each position, we solve the minimum jumps problem:
ans = last = mx = 0
for i in range(n):
dist = f(i)
mx = max(mx, i + dist) # update the farthest reachable position
if i == last: # reached the end of current jump range
if i == mx: # cannot move further
return -1
last = mx # make a new jump to the farthest position
ans += 1
The algorithm maintains:
last
: the position where we must make the next jumpmx
: the farthest position reachable from current rangeans
: the number of jumps made
At each position i
, we:
- Calculate how far we can jump from
i
usingf(i)
- Update the maximum reachable position
mx
- If we reach
last
, we must jump again:- If
last == mx
, we're stuck (return-1
) - Otherwise, jump to
mx
and increment the answer
- If
Time Complexity
- Preprocessing:
O(L)
whereL
is the total length of all words - For each position in target:
O(log m)
for binary search withO(1)
hash checks - Total:
O(L + n log m)
wheren
is the length of target andm
is the maximum word length
Space Complexity
O(L)
for storing hash values of all prefixesO(n)
for the hashing data structure of target
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a concrete example to illustrate the solution approach.
Example: words = ["abc", "ab", "def"]
and target = "abdef"
Step 1: Preprocessing - Build Hash Sets for Valid Prefixes
First, we compute hash values for all prefixes of words in words
:
- From "abc": hash("a") → s[1], hash("ab") → s[2], hash("abc") → s[3]
- From "ab": hash("a") → s[1], hash("ab") → s[2]
- From "def": hash("d") → s[1], hash("de") → s[2], hash("def") → s[3]
Our hash sets become:
s[1]
= {hash("a"), hash("d")}s[2]
= {hash("ab"), hash("de")}s[3]
= {hash("abc"), hash("def")}
Step 2: Compute Maximum Match Length at Each Position
For each position i in target = "abdef", we use binary search to find f(i):
-
i = 0 (looking at "abdef"):
- Binary search range: [0, 5]
- Check mid=3: "abd" → NOT in s[3] → search [0, 2]
- Check mid=2: "ab" → IS in s[2] → search [2, 2]
- Result: f(0) = 2 (can match "ab")
-
i = 1 (looking at "bdef"):
- Binary search range: [0, 4]
- Check mid=2: "bd" → NOT in s[2] → search [0, 1]
- Check mid=1: "b" → NOT in s[1] → search [0, 0]
- Result: f(1) = 0 (no valid prefix starts with "b")
-
i = 2 (looking at "def"):
- Binary search range: [0, 3]
- Check mid=2: "de" → IS in s[2] → search [2, 3]
- Check mid=3: "def" → IS in s[3] → search [3, 3]
- Result: f(2) = 3 (can match "def")
-
i = 3 (looking at "ef"):
- Binary search range: [0, 2]
- Check mid=1: "e" → NOT in s[1] → search [0, 0]
- Result: f(3) = 0 (no valid prefix starts with "e")
-
i = 4 (looking at "f"):
- Binary search range: [0, 1]
- Check mid=1: "f" → NOT in s[1] → search [0, 0]
- Result: f(4) = 0 (no valid prefix starts with "f")
Step 3: Greedy Jump Strategy
Now we simulate the jumping process:
Initial state: ans = 0
, last = 0
, mx = 0
-
i = 0:
- f(0) = 2, so from position 0 we can reach position 0+2 = 2
- Update: mx = max(0, 2) = 2
- Since i == last (both 0), we need to jump:
- last ≠ mx (0 ≠ 2), so we can proceed
- Update: last = 2, ans = 1
- We've made our first jump, using "ab" to cover positions [0,1]
-
i = 1:
- f(1) = 0, so from position 1 we can't jump anywhere
- mx remains 2
- i < last (1 < 2), so no jump needed yet
-
i = 2:
- f(2) = 3, so from position 2 we can reach position 2+3 = 5
- Update: mx = max(2, 5) = 5
- Since i == last (both 2), we need to jump:
- last ≠ mx (2 ≠ 5), so we can proceed
- Update: last = 5, ans = 2
- We've made our second jump, using "def" to cover positions [2,4]
-
i = 3 and i = 4:
- Both have f(i) = 0
- mx remains 5
- i < last, so no jumps needed
Final result: We've reached the end (position 5) with ans = 2 jumps.
The solution correctly identifies that we need 2 valid strings: "ab" + "def" = "abdef"
Key Insights from the Example:
- The binary search efficiently finds the longest valid prefix at each position
- The greedy strategy ensures we make the minimum number of jumps by always extending our reach as far as possible
- Positions where f(i) = 0 (like positions 1, 3, 4) don't affect the result as long as they're covered by previous jumps
Solution Implementation
1class Hashing:
2 """Rolling hash implementation for string hashing"""
3 __slots__ = ["mod", "h", "p"]
4
5 def __init__(self, s: List[str], base: int, mod: int):
6 """
7 Initialize the rolling hash for string s
8 Args:
9 s: input string as list of characters
10 base: base for polynomial rolling hash
11 mod: modulo value to prevent overflow
12 """
13 self.mod = mod
14 # h[i] stores hash value of prefix s[0:i]
15 self.h = [0] * (len(s) + 1)
16 # p[i] stores base^i mod mod
17 self.p = [1] * (len(s) + 1)
18
19 # Compute prefix hashes and powers of base
20 for i in range(1, len(s) + 1):
21 self.h[i] = (self.h[i - 1] * base + ord(s[i - 1])) % mod
22 self.p[i] = (self.p[i - 1] * base) % mod
23
24 def query(self, l: int, r: int) -> int:
25 """
26 Get hash value of substring s[l-1:r] (1-indexed)
27 Args:
28 l: left boundary (1-indexed)
29 r: right boundary (1-indexed)
30 Returns:
31 Hash value of the substring
32 """
33 return (self.h[r] - self.h[l - 1] * self.p[r - l + 1]) % self.mod
34
35
36class Solution:
37 def minValidStrings(self, words: List[str], target: str) -> int:
38 """
39 Find minimum number of valid strings needed to form target
40 Args:
41 words: list of valid word strings
42 target: target string to form
43 Returns:
44 Minimum number of valid strings, or -1 if impossible
45 """
46 def find_max_prefix_match(start_index: int) -> int:
47 """
48 Binary search to find maximum length of prefix match starting at start_index
49 Args:
50 start_index: starting position in target string
51 Returns:
52 Maximum length of matching prefix
53 """
54 left, right = 0, min(target_length - start_index, max_word_length)
55
56 while left < right:
57 mid = (left + right + 1) >> 1
58 # Get hash of substring from target
59 substring_hash = target_hashing.query(start_index + 1, start_index + mid)
60
61 # Check if this hash exists in words with length mid
62 if substring_hash in hash_sets[mid]:
63 left = mid
64 else:
65 right = mid - 1
66
67 return left
68
69 # Hash parameters
70 BASE = 13331
71 MOD = 998244353
72
73 # Initialize hashing for target string
74 target_hashing = Hashing(target, BASE, MOD)
75 target_length = len(target)
76
77 # Find maximum word length
78 max_word_length = max(len(word) for word in words)
79
80 # hash_sets[i] contains all hashes of prefixes of length i from all words
81 hash_sets = [set() for _ in range(max_word_length + 1)]
82
83 # Precompute hashes for all prefixes of all words
84 for word in words:
85 hash_value = 0
86 for length, char in enumerate(word, 1):
87 hash_value = (hash_value * BASE + ord(char)) % MOD
88 hash_sets[length].add(hash_value)
89
90 # Greedy approach: always take the longest possible match
91 answer = 0
92 last_covered = 0 # Last position that must be covered in current step
93 max_reachable = 0 # Maximum position reachable so far
94
95 for current_pos in range(target_length):
96 # Find longest match starting at current position
97 match_length = find_max_prefix_match(current_pos)
98 max_reachable = max(max_reachable, current_pos + match_length)
99
100 # If we've reached the last covered position, we need a new string
101 if current_pos == last_covered:
102 # Check if we can't progress further
103 if current_pos == max_reachable:
104 return -1
105
106 # Use one more string and update last covered position
107 last_covered = max_reachable
108 answer += 1
109
110 return answer
111
1/**
2 * Rolling hash implementation for efficient substring hashing
3 */
4class Hashing {
5 private final long[] power; // power[i] = base^i mod mod
6 private final long[] hash; // hash[i] = hash value of substring [0, i)
7 private final long mod; // modulo value for hash computation
8
9 /**
10 * Initialize the hashing structure for a given string
11 * @param word The string to preprocess for hashing
12 * @param base The base for polynomial rolling hash
13 * @param mod The modulo value to prevent overflow
14 */
15 public Hashing(String word, long base, int mod) {
16 int n = word.length();
17 power = new long[n + 1];
18 hash = new long[n + 1];
19 power[0] = 1;
20 this.mod = mod;
21
22 // Precompute powers of base and prefix hashes
23 for (int i = 1; i <= n; i++) {
24 power[i] = power[i - 1] * base % mod;
25 hash[i] = (hash[i - 1] * base + word.charAt(i - 1)) % mod;
26 }
27 }
28
29 /**
30 * Query the hash value of substring [l-1, r-1] (1-indexed input)
31 * @param l Start position (1-indexed)
32 * @param r End position (1-indexed)
33 * @return Hash value of the substring
34 */
35 public long query(int l, int r) {
36 // Calculate hash of substring using prefix hashes
37 return (hash[r] - hash[l - 1] * power[r - l + 1] % mod + mod) % mod;
38 }
39}
40
41class Solution {
42 private Hashing targetHashing; // Hashing structure for the target string
43 private Set<Long>[] prefixHashSets; // prefixHashSets[i] stores all hash values of prefixes of length i
44
45 /**
46 * Find minimum number of valid strings needed to form the target
47 * @param words Array of valid strings that can be used
48 * @param target The target string to form
49 * @return Minimum number of strings needed, or -1 if impossible
50 */
51 public int minValidStrings(String[] words, String target) {
52 // Hash function parameters
53 int base = 13331;
54 int mod = 998244353;
55
56 // Initialize hashing for target string
57 targetHashing = new Hashing(target, base, mod);
58
59 // Find maximum word length
60 int maxWordLength = Arrays.stream(words).mapToInt(String::length).max().orElse(0);
61
62 // Initialize hash sets for each prefix length
63 prefixHashSets = new Set[maxWordLength + 1];
64 Arrays.setAll(prefixHashSets, k -> new HashSet<>());
65
66 // Store hash values of all prefixes of all words
67 for (String word : words) {
68 long hashValue = 0;
69 for (int j = 0; j < word.length(); j++) {
70 hashValue = (hashValue * base + word.charAt(j)) % mod;
71 prefixHashSets[j + 1].add(hashValue);
72 }
73 }
74
75 // Greedy approach to find minimum strings needed
76 int answer = 0;
77 int lastCoveredPosition = 0; // Last position where we added a new string
78 int maxReachablePosition = 0; // Maximum position reachable from current coverage
79 int targetLength = target.length();
80
81 for (int i = 0; i < targetLength; i++) {
82 // Find longest matching prefix starting at position i
83 int longestMatch = findLongestMatchingPrefix(i, targetLength, maxWordLength);
84 maxReachablePosition = Math.max(maxReachablePosition, i + longestMatch);
85
86 // If we've reached the last covered position, we need a new string
87 if (i == lastCoveredPosition) {
88 if (i == maxReachablePosition) {
89 // Cannot progress further - target cannot be formed
90 return -1;
91 }
92 lastCoveredPosition = maxReachablePosition;
93 answer++;
94 }
95 }
96
97 return answer;
98 }
99
100 /**
101 * Find the longest prefix of any word that matches the target starting at position i
102 * @param startPos Starting position in target string
103 * @param targetLength Total length of target string
104 * @param maxWordLength Maximum length among all words
105 * @return Length of longest matching prefix
106 */
107 private int findLongestMatchingPrefix(int startPos, int targetLength, int maxWordLength) {
108 int left = 0;
109 int right = Math.min(targetLength - startPos, maxWordLength);
110
111 // Binary search for the longest matching prefix
112 while (left < right) {
113 int mid = (left + right + 1) >> 1; // Equivalent to (left + right + 1) / 2
114
115 // Get hash of substring from target starting at startPos with length mid
116 long substringHash = targetHashing.query(startPos + 1, startPos + mid);
117
118 // Check if this hash exists in our prefix hash sets
119 if (prefixHashSets[mid].contains(substringHash)) {
120 left = mid; // Can match at least mid characters, try longer
121 } else {
122 right = mid - 1; // Cannot match mid characters, try shorter
123 }
124 }
125
126 return left;
127 }
128}
129
1class Hashing {
2private:
3 vector<long long> power; // power[i] = base^i mod modulo
4 vector<long long> prefixHash; // prefixHash[i] = hash of word[0..i-1]
5 long long modulo;
6
7public:
8 // Constructor: builds rolling hash for the given word
9 Hashing(const string& word, long long base, int modulo) {
10 int n = word.size();
11 power.resize(n + 1);
12 prefixHash.resize(n + 1);
13 power[0] = 1;
14 this->modulo = modulo;
15
16 // Precompute powers of base and prefix hashes
17 for (int i = 1; i <= n; i++) {
18 power[i] = (power[i - 1] * base) % modulo;
19 prefixHash[i] = (prefixHash[i - 1] * base + word[i - 1]) % modulo;
20 }
21 }
22
23 // Get hash of substring from index l-1 to r-1 (1-indexed query)
24 long long query(int l, int r) {
25 // Calculate hash of substring using prefix hashes
26 return (prefixHash[r] - prefixHash[l - 1] * power[r - l + 1] % modulo + modulo) % modulo;
27 }
28};
29
30class Solution {
31public:
32 int minValidStrings(vector<string>& words, string target) {
33 // Hash parameters
34 const int BASE = 13331;
35 const int MODULO = 998244353;
36
37 // Build rolling hash for target string
38 Hashing targetHashing(target, BASE, MODULO);
39
40 int maxWordLength = 0;
41 int targetLength = target.size();
42
43 // Find maximum word length
44 for (const string& word : words) {
45 maxWordLength = max(maxWordLength, (int)word.size());
46 }
47
48 // hashSets[i] contains all hashes of prefixes of length i from all words
49 vector<unordered_set<long long>> hashSets(maxWordLength + 1);
50
51 // Build hash sets for all prefixes of all words
52 for (const string& word : words) {
53 long long hash = 0;
54 for (int j = 0; j < word.size(); j++) {
55 hash = (hash * BASE + word[j]) % MODULO;
56 hashSets[j + 1].insert(hash);
57 }
58 }
59
60 // Binary search to find longest matching prefix starting at position i
61 auto findLongestMatch = [&](int startPos) -> int {
62 int left = 0;
63 int right = min(targetLength - startPos, maxWordLength);
64
65 while (left < right) {
66 int mid = (left + right + 1) >> 1;
67 long long substringHash = targetHashing.query(startPos + 1, startPos + mid);
68
69 if (hashSets[mid].count(substringHash)) {
70 left = mid; // Found match, try longer
71 } else {
72 right = mid - 1; // No match, try shorter
73 }
74 }
75 return left;
76 };
77
78 // Greedy algorithm: jump to farthest reachable position
79 int minStrings = 0;
80 int currentEnd = 0; // End of current jump range
81 int farthestReach = 0; // Farthest position reachable
82
83 for (int i = 0; i < targetLength; i++) {
84 // Find longest match starting at position i
85 int matchLength = findLongestMatch(i);
86 farthestReach = max(farthestReach, i + matchLength);
87
88 // If we've reached the end of current jump range
89 if (i == currentEnd) {
90 // Check if we can't progress further
91 if (i == farthestReach) {
92 return -1; // Impossible to cover entire target
93 }
94 // Make a jump to the farthest reachable position
95 currentEnd = farthestReach;
96 minStrings++;
97 }
98 }
99
100 return minStrings;
101 }
102};
103
1// Global variables for hashing
2let power: number[] = []; // power[i] = base^i mod modulo
3let prefixHash: number[] = []; // prefixHash[i] = hash of word[0..i-1]
4let modulo: number;
5
6// Initialize rolling hash for the given word
7function initializeHashing(word: string, base: number, mod: number): void {
8 const n = word.length;
9 power = new Array(n + 1);
10 prefixHash = new Array(n + 1);
11 power[0] = 1;
12 modulo = mod;
13 prefixHash[0] = 0;
14
15 // Precompute powers of base and prefix hashes
16 for (let i = 1; i <= n; i++) {
17 power[i] = (power[i - 1] * base) % modulo;
18 prefixHash[i] = (prefixHash[i - 1] * base + word.charCodeAt(i - 1)) % modulo;
19 }
20}
21
22// Get hash of substring from index l-1 to r-1 (1-indexed query)
23function queryHash(l: number, r: number): number {
24 // Calculate hash of substring using prefix hashes
25 const hashValue = (prefixHash[r] - prefixHash[l - 1] * power[r - l + 1] % modulo + modulo) % modulo;
26 return hashValue;
27}
28
29function minValidStrings(words: string[], target: string): number {
30 // Hash parameters
31 const BASE = 13331;
32 const MODULO = 998244353;
33
34 // Build rolling hash for target string
35 initializeHashing(target, BASE, MODULO);
36
37 let maxWordLength = 0;
38 const targetLength = target.length;
39
40 // Find maximum word length
41 for (const word of words) {
42 maxWordLength = Math.max(maxWordLength, word.length);
43 }
44
45 // hashSets[i] contains all hashes of prefixes of length i from all words
46 const hashSets: Set<number>[] = new Array(maxWordLength + 1);
47 for (let i = 0; i <= maxWordLength; i++) {
48 hashSets[i] = new Set<number>();
49 }
50
51 // Build hash sets for all prefixes of all words
52 for (const word of words) {
53 let hash = 0;
54 for (let j = 0; j < word.length; j++) {
55 hash = (hash * BASE + word.charCodeAt(j)) % MODULO;
56 hashSets[j + 1].add(hash);
57 }
58 }
59
60 // Binary search to find longest matching prefix starting at position startPos
61 const findLongestMatch = (startPos: number): number => {
62 let left = 0;
63 let right = Math.min(targetLength - startPos, maxWordLength);
64
65 while (left < right) {
66 const mid = (left + right + 1) >> 1;
67 const substringHash = queryHash(startPos + 1, startPos + mid);
68
69 if (hashSets[mid].has(substringHash)) {
70 left = mid; // Found match, try longer
71 } else {
72 right = mid - 1; // No match, try shorter
73 }
74 }
75 return left;
76 };
77
78 // Greedy algorithm: jump to farthest reachable position
79 let minStrings = 0;
80 let currentEnd = 0; // End of current jump range
81 let farthestReach = 0; // Farthest position reachable
82
83 for (let i = 0; i < targetLength; i++) {
84 // Find longest match starting at position i
85 const matchLength = findLongestMatch(i);
86 farthestReach = Math.max(farthestReach, i + matchLength);
87
88 // If we've reached the end of current jump range
89 if (i === currentEnd) {
90 // Check if we can't progress further
91 if (i === farthestReach) {
92 return -1; // Impossible to cover entire target
93 }
94 // Make a jump to the farthest reachable position
95 currentEnd = farthestReach;
96 minStrings++;
97 }
98 }
99
100 return minStrings;
101}
102
Time and Space Complexity
Time Complexity: O(n × log n + L)
The time complexity breaks down as follows:
- Building the hash sets for all prefixes of words takes
O(L)
time, whereL
is the total length of all words - The main loop iterates through each position in the target string (
n
iterations) - For each position
i
, the functionf(i)
performs a binary search:- The binary search range is from
0
tomin(n - i, m)
, wherem
is the maximum word length - Each binary search iteration calls
hashing.query()
which runs inO(1)
time - The binary search takes
O(log min(n - i, m))
which is bounded byO(log n)
- The binary search range is from
- Therefore, the total time for all binary searches is
O(n × log n)
- Overall time complexity:
O(n × log n + L)
Space Complexity: O(n + L)
The space complexity consists of:
- The
Hashing
class stores two arraysh
andp
, each of sizen + 1
, usingO(n)
space - The hash sets
s
store hash values for all prefixes of all words:- There are at most
m + 1
sets - The total number of hash values stored across all sets is bounded by the total length of all words
L
- This uses
O(L)
space
- There are at most
- Other variables (
ans
,last
,mx
, etc.) useO(1)
space - Overall space complexity:
O(n + L)
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Off-by-One Error in Binary Search Range
A common mistake is incorrectly setting the binary search range when finding the maximum prefix match. The issue often occurs when determining the upper bound.
Pitfall Code:
def find_max_prefix_match(start_index: int) -> int:
# WRONG: May cause index out of bounds
left, right = 1, min(target_length - start_index, max_word_length)
# Starting from 1 assumes we always have at least 1 character match
Why it's wrong:
- Starting
left
from 1 assumes we can always match at least one character, but this isn't guaranteed - If no prefix matches at position
start_index
, the function would incorrectly return 1
Solution:
def find_max_prefix_match(start_index: int) -> int:
# CORRECT: Start from 0 to handle no-match case
left, right = 0, min(target_length - start_index, max_word_length)
2. Hash Collision Not Considered
While the code uses a large prime modulo (998244353), hash collisions can still occur in edge cases, leading to false positive matches.
Pitfall: Relying on a single hash function without verification.
Solution: Use double hashing or verify matches with actual string comparison:
# Enhanced version with double hashing
class DoubleHashing:
def __init__(self, s, base1=13331, mod1=998244353, base2=31, mod2=10**9+7):
self.hash1 = Hashing(s, base1, mod1)
self.hash2 = Hashing(s, base2, mod2)
def query(self, l, r):
return (self.hash1.query(l, r), self.hash2.query(l, r))
3. Incorrect Greedy Jump Logic
A subtle but critical error occurs when updating the jump position without properly checking if progress is being made.
Pitfall Code:
for current_pos in range(target_length):
match_length = find_max_prefix_match(current_pos)
max_reachable = max(max_reachable, current_pos + match_length)
if current_pos == last_covered:
# WRONG: Not checking if we're stuck before incrementing answer
last_covered = max_reachable
answer += 1
Why it's wrong:
- This would increment
answer
even whenmax_reachable
equalscurrent_pos
(no progress) - Results in returning a positive number instead of -1 for impossible cases
Solution:
if current_pos == last_covered: # CORRECT: Check if we're stuck first if current_pos == max_reachable: return -1 # Cannot progress further last_covered = max_reachable answer += 1
4. Empty Words or Target Edge Cases
The code doesn't explicitly handle edge cases like empty strings in the words array or empty target.
Pitfall: Not validating input can cause unexpected behavior.
Solution:
def minValidStrings(self, words: List[str], target: str) -> int:
# Add input validation
if not target:
return 0
if not words or all(not word for word in words):
return -1
# Filter out empty words
words = [word for word in words if word]
if not words:
return -1
# Continue with main logic...
5. Integer Overflow in Hash Computation
When computing hash values for very long strings, intermediate calculations might overflow even with modulo operations.
Pitfall Code:
# In preprocessing
hash_value = (hash_value * BASE + ord(char)) % MOD
Why it's a concern:
- Python handles big integers automatically, but in other languages this could overflow
- Even in Python, very large intermediate values can slow down computation
Solution:
# More careful modulo application
hash_value = ((hash_value * BASE) % MOD + ord(char)) % MOD
These pitfalls highlight the importance of careful boundary condition handling, proper validation, and understanding the nuances of the greedy approach in this problem.
Which of the following problems can be solved with backtracking (select multiple)
Recommended Readings
Segment Tree Faster Range Queries For this article we want to introduce the idea of a Segment Tree Segment Trees allow us to quickly perform range queries as well as range updates Suppose we have an array and we want to know the sum of a particular range of numbers as well
Binary Search Speedrun For each of the Speedrun questions you will be given a binary search related problem and a corresponding multiple choice question The multiple choice questions are related to the techniques and template s introduced in the binary search section It's recommended that you have gone through at
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Want a Structured Path to Master System Design Too? Don’t Miss This!