3408. Design Task Manager
Problem Description
The task management system allows users to administer tasks, each with a priority level. The operations on the task manager include:
- Initializing the system with a list of user-task-priority triples.
- Adding tasks to a user with a specified priority.
- Editing the priority of an existing task.
- Removing a specified task.
- Executing the task with the highest priority across all users, with a tie-breaking condition of choosing the task with the highest taskId. After execution, the task is removed, and the function returns the userId associated with the executed task. If no tasks are available, it returns -1.
Intuition
To efficiently manage tasks and their priorities, we need a data structure that maintains tasks sorted by their priorities and allows quick updates for adding, editing, and removing tasks. A combination of a dictionary to map taskIds to their task details, and a sorted list to maintain priorities for execution, provides an optimal solution. The dictionary gives us fast access and modification capabilities for task details, while the sorted list ensures that we can always retrieve the highest priority task in logarithmic time. The sorted list stores negative priorities and taskIds to mimic max-heap behavior, facilitating the retrieval of tasks with higher priorities and resolving ties by favoring higher taskIds.
Learn more about Heap (Priority Queue) patterns.
Solution Approach
The solution involves creating a TaskManager
class that utilizes a dictionary and a sorted list to efficiently manage tasks.
-
Data Structures Used:
self.d
: A dictionary to store task details withtaskId
as the key. Each entry maps thetaskId
to a tuple(userId, priority)
, allowing quick lookup and modification of tasks.self.st
: A sorted list (SortedList
) that maintains tasks in a sorted order based on their priority and taskId. By storing tuples as(-priority, -taskId)
, it mimics max-heap functionality, allowing us to efficiently retrieve tasks with the highest priority and resolve priority ties by using the highesttaskId
.
-
Initialization:
- The constructor,
__init__
, accepts a list of tasks where each task is described as[userId, taskId, priority]
. It populatesself.d
andself.st
using theadd
method.
- The constructor,
-
Adding a Task:
- The
add
method takesuserId
,taskId
, andpriority
. It updates the dictionaryself.d
by mappingtaskId
to(userId, priority)
. - It then adds the tuple
(-priority, -taskId)
to the sorted listself.st
.
- The
-
Editing a Task's Priority:
- The
edit
method changes the priority of an existing task by first removing the old priority entry fromself.st
. - It updates
self.d
with the new priority and adds the updated task toself.st
.
- The
-
Removing a Task:
- The
rmv
method retrieves and removes the task fromself.d
. - It also removes the corresponding entry from
self.st
.
- The
-
Executing the Task with Highest Priority:
execTop
checks ifself.st
is empty. If so, it returns-1
indicating no tasks are available.- If tasks are available, it retrieves and removes the task with the highest priority from
self.st
. - It extracts the
taskId
, finds the correspondinguserId
fromself.d
, removes the task, and returns theuserId
of the executed task.
The approach ensures that all operations, such as adding, editing, and removing tasks, are efficiently performed while maintaining the necessary task ordering for execution.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a simple example to illustrate the solution approach for the task management system.
Initial Setup
Consider a scenario where the system is initialized with the following list of user-task-priority triples:
- User
1
with Task101
and Priority5
- User
2
with Task102
and Priority3
- User
3
with Task103
and Priority4
We initialize the TaskManager
with these tasks. After initialization:
-
The dictionary
self.d
will have:{ 101: (1, 5), // Task 101 belongs to User 1 with Priority 5 102: (2, 3), // Task 102 belongs to User 2 with Priority 3 103: (3, 4) // Task 103 belongs to User 3 with Priority 4 }
-
The sorted list
self.st
will store tuples:[(-5, -101), (-3, -102), (-4, -103)]
Adding a Task
Now, add a new task 104
for User 1
with Priority 6
:
-
Update
self.d
:{ 101: (1, 5), 102: (2, 3), 103: (3, 4), 104: (1, 6) // New task entry added }
-
Add to
self.st
:[(-6, -104), (-5, -101), (-3, -102), (-4, -103)]
Editing a Task's Priority
Edit Task 102
to have Priority 7
:
-
Remove the old tuple
(-3, -102)
fromself.st
. -
Update
self.d
:{ 101: (1, 5), 102: (2, 7), // Updated Priority for Task 102 103: (3, 4), 104: (1, 6) }
-
Add the updated tuple to
self.st
:[(-7, -102), (-6, -104), (-5, -101), (-4, -103)]
Removing a Task
Remove Task 101
:
-
Remove task from
self.d
:{ 102: (2, 7), 103: (3, 4), 104: (1, 6) }
-
Remove tuple from
self.st
:[(-7, -102), (-6, -104), (-4, -103)]
Executing the Task with Highest Priority
Execute the task with the highest priority:
-
Check
self.st
. The highest priority task is(-7, -102)
. -
Retrieve and remove this task.
-
Get
userId
fromself.d
for Task102
which is User2
. -
Remove Task
102
fromself.d
:{ 103: (3, 4), 104: (1, 6) }
-
Return the
userId
: 2
This complete walk-through helps in understanding how tasks are managed using the TaskManager
system.
Solution Implementation
1from typing import List
2from sortedcontainers import SortedList
3
4class TaskManager:
5 def __init__(self, tasks: List[List[int]]):
6 # Dictionary to map taskId to a tuple of (userId, priority)
7 self.task_map = {}
8
9 # Sorted list to efficiently fetch the highest priority task
10 self.sorted_tasks = SortedList()
11
12 # Add initial tasks
13 for task in tasks:
14 self.add(*task)
15
16 def add(self, userId: int, taskId: int, priority: int) -> None:
17 # Store the task data in the dictionary
18 self.task_map[taskId] = (userId, priority)
19
20 # Add task to the sorted list using negative values to mimic max-heap
21 self.sorted_tasks.add((-priority, -taskId))
22
23 def edit(self, taskId: int, newPriority: int) -> None:
24 # Fetch the current userId and priority for the task
25 userId, current_priority = self.task_map[taskId]
26
27 # Remove the task from the sorted list with its old values
28 self.sorted_tasks.discard((-current_priority, -taskId))
29
30 # Update the task's priority in the dictionary
31 self.task_map[taskId] = (userId, newPriority)
32
33 # Re-add the task to the sorted list with the new priority
34 self.sorted_tasks.add((-newPriority, -taskId))
35
36 def rmv(self, taskId: int) -> None:
37 # Retrieve the priority of the task to remove
38 _, priority = self.task_map[taskId]
39
40 # Remove from the dictionary
41 del self.task_map[taskId]
42
43 # Remove the task entry from the sorted list
44 self.sorted_tasks.remove((-priority, -taskId))
45
46 def execTop(self) -> int:
47 # Return -1 if no tasks are available
48 if not self.sorted_tasks:
49 return -1
50
51 # Extract the highest priority taskId
52 top_task_id = -self.sorted_tasks.pop(0)[1]
53
54 # Retrieve the userId associated with this task
55 userId, _ = self.task_map[top_task_id]
56
57 # Remove the task from the dictionary
58 del self.task_map[top_task_id]
59
60 # Return the userId of the executed task
61 return userId
62
63# Your TaskManager object will be instantiated and called as such:
64# obj = TaskManager(tasks)
65# obj.add(userId, taskId, priority)
66# obj.edit(taskId, newPriority)
67# obj.rmv(taskId)
68# user_id_of_executed_task = obj.execTop()
69
1import java.util.*;
2
3class TaskManager {
4 // Map to store taskId as key and an array [userId, priority] as value
5 private final Map<Integer, int[]> taskData = new HashMap<>();
6
7 // TreeSet to maintain tasks sorted primarily by priority in descending order,
8 // and by taskId in descending order when priorities are the same
9 private final TreeSet<int[]> taskSet = new TreeSet<>((a, b) -> {
10 if (a[0] == b[0]) {
11 return b[1] - a[1];
12 }
13 return b[0] - a[0];
14 });
15
16 // Constructor to initialize the TaskManager with a list of tasks
17 public TaskManager(List<List<Integer>> tasks) {
18 for (List<Integer> task : tasks) {
19 add(task.get(0), task.get(1), task.get(2));
20 }
21 }
22
23 // Method to add a new task
24 public void add(int userId, int taskId, int priority) {
25 taskData.put(taskId, new int[] {userId, priority});
26 taskSet.add(new int[] {priority, taskId});
27 }
28
29 // Method to edit the priority of an existing task
30 public void edit(int taskId, int newPriority) {
31 int[] taskDetails = taskData.get(taskId); // Get the current details for the task
32 int userId = taskDetails[0];
33 int oldPriority = taskDetails[1];
34
35 // Remove the old entry and add the updated one
36 taskSet.remove(new int[] {oldPriority, taskId});
37 taskSet.add(new int[] {newPriority, taskId});
38
39 // Update the task details in the map
40 taskData.put(taskId, new int[] {userId, newPriority});
41 }
42
43 // Method to remove a task from the manager
44 public void rmv(int taskId) {
45 int[] taskDetails = taskData.remove(taskId); // Retrieve and remove task data
46 int priority = taskDetails[1];
47
48 // Remove the task from the TreeSet
49 taskSet.remove(new int[] {priority, taskId});
50 }
51
52 // Method to execute and remove the top-priority task
53 public int execTop() {
54 if (taskSet.isEmpty()) {
55 return -1; // Return -1 if no tasks are available
56 }
57 int[] topTask = taskSet.pollFirst(); // Retrieve and remove the highest-priority task
58 int[] taskDetails = taskData.remove(topTask[1]); // Remove task from map as well
59 return taskDetails[0]; // Return the userId associated with the executed task
60 }
61}
62
63/**
64 * Your TaskManager object will be instantiated and called as such:
65 * TaskManager obj = new TaskManager(tasks);
66 * obj.add(userId,taskId,priority);
67 * obj.edit(taskId,newPriority);
68 * obj.rmv(taskId);
69 * int param_4 = obj.execTop();
70 */
71
1#include <unordered_map>
2#include <set>
3#include <vector>
4
5using namespace std;
6
7class TaskManager {
8private:
9 // Map to store information about tasks
10 // Key: taskId, Value: pair of userId and priority
11 unordered_map<int, pair<int, int>> taskData;
12
13 // Set to maintain tasks ordered by priority and taskId
14 // The use of negative values is to simulate a max-heap behavior with a set
15 set<pair<int, int>> sortedTasks;
16
17public:
18 // Constructor that initializes the TaskManager with the given tasks
19 TaskManager(vector<vector<int>>& tasks) {
20 // Add each task from the input vector to the system
21 for (const auto& task : tasks) {
22 add(task[0], task[1], task[2]); // userId, taskId, priority
23 }
24 }
25
26 // Method to add a new task to the system
27 void add(int userId, int taskId, int priority) {
28 // Store task details in the map
29 taskData[taskId] = {userId, priority};
30 // Insert task into the set, using negative priority and taskId for sorting
31 sortedTasks.insert({-priority, -taskId});
32 }
33
34 // Method to edit an existing task's priority
35 void edit(int taskId, int newPriority) {
36 auto [userId, oldPriority] = taskData[taskId];
37 // Remove old task entry from the set
38 sortedTasks.erase({-oldPriority, -taskId});
39 // Insert updated task entry into the set
40 sortedTasks.insert({-newPriority, -taskId});
41 // Update task details in the map
42 taskData[taskId] = {userId, newPriority};
43 }
44
45 // Method to remove a task from the system
46 void rmv(int taskId) {
47 auto [userId, priority] = taskData[taskId];
48 // Remove task entry from the set
49 sortedTasks.erase({-priority, -taskId});
50 // Erase task details from the map
51 taskData.erase(taskId);
52 }
53
54 // Method to execute the task with the highest priority
55 int execTop() {
56 // Check if there are any tasks to execute
57 if (sortedTasks.empty()) {
58 return -1; // Return -1 if no tasks are available
59 }
60 // Get the task with the highest priority
61 auto topTask = *sortedTasks.begin();
62 sortedTasks.erase(sortedTasks.begin());
63 int taskId = -topTask.second;
64 int userId = taskData[taskId].first;
65 // Remove executed task from the map
66 taskData.erase(taskId);
67 // Return the userId associated with the executed task
68 return userId;
69 }
70};
71
72/**
73 * Your TaskManager object will be instantiated and called as such:
74 * TaskManager* obj = new TaskManager(tasks);
75 * obj->add(userId,taskId,priority);
76 * obj->edit(taskId,newPriority);
77 * obj->rmv(taskId);
78 * int result = obj->execTop();
79 */
80
1type TaskData = {
2 userId: number;
3 priority: number;
4};
5
6// Map to store information about tasks
7// Key: taskId, Value: pair of userId and priority
8const taskData: Map<number, TaskData> = new Map();
9
10// Set to maintain tasks ordered by priority and taskId
11// Using a collection of arrays to simulate sorting by negative priority and negative taskId
12const sortedTasks: Set<[number, number]> = new Set();
13
14// Initialize the task manager with the given list of tasks
15function taskManager(tasks: number[][]): void {
16 // Add each task from the input array to the system
17 tasks.forEach(task => {
18 add(task[0], task[1], task[2]); // userId, taskId, priority
19 });
20}
21
22// Add a new task to the system
23function add(userId: number, taskId: number, priority: number): void {
24 // Store task details in the map
25 taskData.set(taskId, { userId, priority });
26 // Insert task into the set, using negative priority and taskId for sorting
27 sortedTasks.add([-priority, -taskId]);
28}
29
30// Edit an existing task's priority
31function edit(taskId: number, newPriority: number): void {
32 const taskInfo = taskData.get(taskId);
33 if (taskInfo) {
34 const { userId, priority } = taskInfo;
35 // Remove old task entry from the set
36 sortedTasks.delete([-priority, -taskId]);
37 // Insert updated task entry into the set
38 sortedTasks.add([-newPriority, -taskId]);
39 // Update task details in the map
40 taskData.set(taskId, { userId, newPriority });
41 }
42}
43
44// Remove a task from the system
45function rmv(taskId: number): void {
46 const taskInfo = taskData.get(taskId);
47 if (taskInfo) {
48 const { priority } = taskInfo;
49 // Remove task entry from the set
50 sortedTasks.delete([-priority, -taskId]);
51 // Erase task details from the map
52 taskData.delete(taskId);
53 }
54}
55
56// Execute the task with the highest priority
57function execTop(): number {
58 // Check if there are any tasks to execute
59 if (sortedTasks.size === 0) {
60 return -1; // Return -1 if no tasks are available
61 }
62 // Get the task with the highest priority
63 const topTask = Array.from(sortedTasks)[0];
64 sortedTasks.delete(topTask);
65 const taskId = -topTask[1];
66 const userId = taskData.get(taskId)?.userId || -1;
67 // Remove executed task from the map
68 taskData.delete(taskId);
69 // Return the userId associated with the executed task
70 return userId;
71}
72
73// Example usage to demonstrate how to call these functions
74const tasks = [
75 [1, 100, 5],
76 [2, 200, 10],
77];
78
79taskManager(tasks);
80add(3, 300, 8);
81console.log(edit(200, 7));
82console.log(rmv(100));
83console.log(execTop());
84
Time and Space Complexity
-
Initialization (
__init__
method):- Time Complexity:
O(n log n)
, wheren
is the number of tasks. Each task insertion in theSortedList
takesO(log n)
. - Space Complexity:
O(n)
, as both the dictionaryd
and theSortedList
st
store up ton
tasks.
- Time Complexity:
-
Add Task (
add
method):- Time Complexity:
O(log n)
for adding an entry toSortedList
and updating the dictionary. - Space Complexity:
O(1)
, as no additional space beyond updates to existing structures is used.
- Time Complexity:
-
Edit Task (
edit
method):- Time Complexity:
O(log n)
. Removing and adding elements toSortedList
both takeO(log n)
. - Space Complexity:
O(1)
, with updates taking place in-place.
- Time Complexity:
-
Remove Task (
rmv
method):- Time Complexity:
O(log n)
, for removing an entry fromSortedList
and dictionary. - Space Complexity:
O(1)
, since again only updates to existing structures are made.
- Time Complexity:
-
Execute Top Task (
execTop
method):- Time Complexity:
O(log n)
, due to popping the first element ofSortedList
. - Space Complexity:
O(1)
, with no additional space requirements beyond updates.
- Time Complexity:
In summary, the overall essence is that operations are efficiently managed with logarithmic time complexities thanks to the SortedList
, while space complexity remains linear within the number of tasks.
Learn more about how to find time and space complexity quickly.
Which of the following is a good use case for backtracking?
Recommended Readings
https algomonster s3 us east 2 amazonaws com cover_photos heap svg Priority Queue and Heap What is the relationship between priority queue and heap Priority Queue is an Abstract Data Type and Heap is the concrete data structure we use to implement a priority queue Priority Queue A priority queue
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https algomonster s3 us east 2 amazonaws com recursion jpg You first
Want a Structured Path to Master System Design Too? Don’t Miss This!