3343. Count Number of Balanced Permutations
Problem Description
You are given a string num
consisting of digits. A string of digits is considered balanced if the sum of digits at even indices equals the sum of digits at odd indices (using 0-based indexing).
Your task is to find the number of distinct permutations of num
that result in a balanced string.
For example, if num = "123"
, you need to find all possible rearrangements of these digits where the sum of digits at positions 0, 2, 4... equals the sum of digits at positions 1, 3, 5...
Since the answer can be very large, return the result modulo 10^9 + 7
.
Key points:
- A permutation is any rearrangement of all characters in the string
- The indexing is 0-based (position 0 is even, position 1 is odd, etc.)
- You need to count only distinct permutations
- The result should be returned modulo
10^9 + 7
Intuition
To find balanced permutations, we first observe that for a string to be balanced, the sum of digits at even positions must equal the sum at odd positions. This means the total sum of all digits must be even (since it equals twice the sum at either even or odd positions). If the total sum s
is odd, no balanced permutation exists.
When s
is even, each set of positions (even and odd) must sum to s/2
. For a string of length n
, we have ⌈n/2⌉
positions for one set and ⌊n/2⌋
for the other.
The key insight is that we don't need to generate all permutations. Instead, we can think of this as a distribution problem: how many ways can we distribute the available digits into two groups (even and odd positions) such that each group sums to s/2
?
Since we have multiple copies of the same digit (counted in cnt[i]
for digit i
), we need to decide how many copies of each digit go to even positions versus odd positions. For digit i
appearing cnt[i]
times, if we place l
copies at odd positions and r
copies at even positions (where l + r = cnt[i]
), the contribution to the odd position sum is l * i
.
The combinatorial aspect comes from the fact that once we decide the distribution, we need to count the number of ways to arrange these digits. If we have a
remaining odd positions and need to place l
digits there, there are C(a, l)
ways. Similarly for even positions with C(b, r)
ways.
We use dynamic programming with memoization to avoid recalculating the same subproblems. Starting from digit 0 to 9, we try all valid distributions and accumulate the count of valid arrangements, ensuring we don't exceed the target sum s/2
for odd positions and we have enough positions available.
Learn more about Math, Dynamic Programming and Combinatorics patterns.
Solution Approach
The solution uses memoization search combined with combinatorial mathematics. Here's the step-by-step implementation:
1. Initial Setup and Validation
- Count the occurrences of each digit (0-9) in the input string using a Counter, storing in
cnt
- Calculate the total sum
s
of all digits - If
s
is odd, return 0 immediately since no balanced permutation is possible - Set up constants:
n
(string length),mod = 10^9 + 7
2. Memoization Search Function: dfs(i, j, a, b)
The function parameters represent:
i
: Current digit being processed (0 to 9)j
: Remaining sum needed for odd positionsa
: Number of remaining odd positions to fillb
: Number of remaining even positions to fill
3. Base Cases
- When
i > 9
(all digits processed): Return 1 ifj = 0
,a = 0
, andb = 0
(successful distribution), otherwise return 0 - Early termination: If
a = 0
butj > 0
, return 0 (impossible to achieve target sum)
4. Recursive Distribution
For each digit i
with cnt[i]
occurrences:
- Try all valid distributions: place
l
copies at odd positions andr = cnt[i] - l
at even positions - Valid distribution conditions:
0 ≤ l ≤ min(cnt[i], a)
(don't exceed available copies or positions)0 ≤ r ≤ b
(don't exceed even positions)l * i ≤ j
(don't exceed remaining sum needed)
5. Counting Arrangements For each valid distribution:
- Calculate the number of ways:
t = C(a, l) × C(b, r) × dfs(i + 1, j - l*i, a - l, b - r)
C(a, l)
: Ways to choosel
positions froma
odd positionsC(b, r)
: Ways to chooser
positions fromb
even positions- Multiply by recursive result for remaining digits
- Add to answer:
ans = (ans + t) % mod
6. Initial Call Start the search with:
dfs(0, s//2, n//2, (n+1)//2)
- Begin with digit 0
- Target sum for odd positions:
s//2
- Number of odd positions:
n//2
(for even-length strings) or(n-1)//2
(for odd-length strings) - Number of even positions:
(n+1)//2
The @cache
decorator ensures each unique state (i, j, a, b)
is computed only once, significantly improving efficiency.
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a small example with num = "1223"
.
Step 1: Initial Setup
- Count digits:
cnt = {1: 1, 2: 2, 3: 1}
(digits 0,4-9 have count 0) - Total sum:
s = 1 + 2 + 2 + 3 = 8
- Since 8 is even, we can proceed (target sum for each group = 8/2 = 4)
- String length
n = 4
, so we have 2 odd positions (indices 1,3) and 2 even positions (indices 0,2)
Step 2: Start DFS
Call dfs(0, 4, 2, 2)
:
- Processing digit 0 (which appears 0 times)
- Need sum of 4 for odd positions
- Have 2 odd positions and 2 even positions available
Since digit 0 appears 0 times, we skip to dfs(1, 4, 2, 2)
.
Step 3: Process Digit 1
At dfs(1, 4, 2, 2)
:
- Digit 1 appears 1 time
- Try distributions:
- Place 0 at odd, 1 at even:
C(2,0) × C(2,1) × dfs(2, 4, 2, 1)
=1 × 2 × ?
- Place 1 at odd, 0 at even:
C(2,1) × C(2,0) × dfs(2, 3, 1, 2)
=2 × 1 × ?
- Place 0 at odd, 1 at even:
Step 4: Continue with Digit 2
Let's follow the second branch: dfs(2, 3, 1, 2)
:
- Digit 2 appears 2 times, need sum of 3, have 1 odd and 2 even positions
- Valid distribution: Place 1 at odd, 1 at even
- Check: 1 × 2 = 2 ≤ 3 ✓
- Count:
C(1,1) × C(2,1) × dfs(3, 1, 0, 1)
=1 × 2 × ?
Step 5: Process Digit 3
At dfs(3, 1, 0, 1)
:
- Digit 3 appears 1 time, need sum of 1, have 0 odd and 1 even position
- Since we have 0 odd positions but need sum of 1, this branch returns 0
Let's backtrack and explore other valid paths...
Valid Configuration Found: One valid distribution that works:
- Digit 1: 0 at odd, 1 at even (contributes 0 to odd sum)
- Digit 2: 2 at odd, 0 at even (contributes 4 to odd sum)
- Digit 3: 0 at odd, 1 at even (contributes 0 to odd sum)
This gives odd positions sum = 4 and even positions sum = 1 + 3 = 4 ✓
The number of ways to arrange this:
- Choose which odd positions get the two 2's:
C(2,2) = 1
- Choose which even position gets the 1:
C(2,1) = 2
- Choose which even position gets the 3:
C(1,1) = 1
- Total: 1 × 2 × 1 = 2 ways
These correspond to the balanced permutations: "1322" and "3122"
- "1322": even indices (0,2) have digits 1,2 (sum=3), odd indices (1,3) have digits 3,2 (sum=5) ✗
- Let me recalculate...
Actually, for "1223", the valid balanced permutations would have:
- Even positions (0,2) sum to 4
- Odd positions (1,3) sum to 4
Valid arrangements include "2132" where:
- Even positions: 2,3 (sum = 5) ✗
Let me correct: A valid arrangement is "1322":
- Even positions (0,2): 1,2 (sum = 3)
- Odd positions (1,3): 3,2 (sum = 5) This is not balanced.
A correct balanced permutation would be "2213":
- Even positions (0,2): 2,1 (sum = 3)
- Odd positions (1,3): 2,3 (sum = 5) Still not balanced.
The algorithm correctly counts all valid distributions through systematic enumeration, using memoization to avoid recomputation and combinatorial formulas to count arrangements efficiently.
Solution Implementation
1from functools import cache
2from collections import Counter
3from math import comb
4
5class Solution:
6 def countBalancedPermutations(self, num: str) -> int:
7 @cache
8 def count_ways(digit: int, target_sum: int, left_slots: int, right_slots: int) -> int:
9 """
10 Dynamic programming function to count valid permutations.
11
12 Args:
13 digit: Current digit being processed (0-9)
14 target_sum: Remaining sum needed for the left group
15 left_slots: Number of positions remaining in left group
16 right_slots: Number of positions remaining in right group
17
18 Returns:
19 Number of valid ways to distribute remaining digits
20 """
21 # Base case: processed all digits 0-9
22 if digit > 9:
23 # Valid if we've used all slots and achieved target sum
24 return 1 if (target_sum == 0 and left_slots == 0 and right_slots == 0) else 0
25
26 # Pruning: impossible to achieve target sum with remaining slots
27 if left_slots == 0 and target_sum > 0:
28 return 0
29
30 total_ways = 0
31
32 # Try all possible distributions of current digit between left and right groups
33 for left_count in range(min(digit_frequency[digit], left_slots) + 1):
34 right_count = digit_frequency[digit] - left_count
35
36 # Check if this distribution is valid
37 if 0 <= right_count <= right_slots and left_count * digit <= target_sum:
38 # Calculate number of ways to arrange this distribution
39 # C(left_slots, left_count) * C(right_slots, right_count)
40 arrangement_count = (
41 comb(left_slots, left_count) *
42 comb(right_slots, right_count)
43 )
44
45 # Recursively count ways for remaining digits
46 remaining_ways = count_ways(
47 digit + 1,
48 target_sum - left_count * digit,
49 left_slots - left_count,
50 right_slots - right_count
51 )
52
53 # Add to total with modulo
54 total_ways = (total_ways + arrangement_count * remaining_ways) % MOD
55
56 return total_ways
57
58 # Convert string digits to integers
59 digits = list(map(int, num))
60 total_sum = sum(digits)
61
62 # Early termination: can't split odd sum equally
63 if total_sum % 2 != 0:
64 return 0
65
66 # Initialize constants
67 n = len(digits)
68 MOD = 10**9 + 7
69
70 # Count frequency of each digit (0-9)
71 digit_frequency = Counter(digits)
72
73 # Start recursive counting
74 # Left group gets n//2 positions, right group gets remaining positions
75 # Target sum for each group is total_sum//2
76 return count_ways(0, total_sum // 2, n // 2, (n + 1) // 2)
77
1class Solution {
2 // Array to store frequency count of each digit (0-9)
3 private final int[] digitCount = new int[10];
4
5 // Modulo value for the result
6 private final int MOD = (int) 1e9 + 7;
7
8 // Memoization array: [digit][remaining sum][positions in even indices][positions in odd indices]
9 private Integer[][][][] memo;
10
11 // Pascal's triangle for combination calculations
12 private long[][] combinations;
13
14 public int countBalancedPermutations(String num) {
15 // Calculate total sum and count frequency of each digit
16 int totalSum = 0;
17 for (char c : num.toCharArray()) {
18 digitCount[c - '0']++;
19 totalSum += c - '0';
20 }
21
22 // If total sum is odd, it's impossible to balance
23 if (totalSum % 2 == 1) {
24 return 0;
25 }
26
27 int n = num.length();
28 int maxPositions = n / 2 + 1;
29
30 // Initialize memoization array
31 memo = new Integer[10][totalSum / 2 + 1][maxPositions][maxPositions + 1];
32
33 // Build Pascal's triangle for combination calculations
34 combinations = new long[maxPositions + 1][maxPositions + 1];
35 combinations[0][0] = 1;
36 for (int i = 1; i <= maxPositions; i++) {
37 combinations[i][0] = 1;
38 for (int j = 1; j <= i; j++) {
39 combinations[i][j] = (combinations[i - 1][j] + combinations[i - 1][j - 1]) % MOD;
40 }
41 }
42
43 // Start DFS with initial parameters:
44 // digit 0, target sum = totalSum/2, even positions = n/2, odd positions = (n+1)/2
45 return dfs(0, totalSum / 2, n / 2, (n + 1) / 2);
46 }
47
48 /**
49 * Dynamic programming with memoization to count valid permutations
50 *
51 * @param currentDigit - current digit being processed (0-9)
52 * @param targetSum - remaining sum needed for even-indexed positions
53 * @param evenPositions - remaining positions at even indices
54 * @param oddPositions - remaining positions at odd indices
55 * @return number of valid permutations
56 */
57 private int dfs(int currentDigit, int targetSum, int evenPositions, int oddPositions) {
58 // Base case: processed all digits
59 if (currentDigit > 9) {
60 // Valid only if all constraints are satisfied (all values are 0)
61 return ((targetSum | evenPositions | oddPositions) == 0) ? 1 : 0;
62 }
63
64 // Early pruning: if no even positions left but still need sum
65 if (evenPositions == 0 && targetSum != 0) {
66 return 0;
67 }
68
69 // Return memoized result if available
70 if (memo[currentDigit][targetSum][evenPositions][oddPositions] != null) {
71 return memo[currentDigit][targetSum][evenPositions][oddPositions];
72 }
73
74 int result = 0;
75
76 // Try placing different counts of current digit in even positions
77 for (int evenCount = 0; evenCount <= Math.min(digitCount[currentDigit], evenPositions); evenCount++) {
78 int oddCount = digitCount[currentDigit] - evenCount;
79
80 // Check if placement is valid:
81 // 1. oddCount must be non-negative and within available odd positions
82 // 2. Sum contribution to even positions must not exceed target
83 if (oddCount >= 0 && oddCount <= oddPositions && evenCount * currentDigit <= targetSum) {
84 // Calculate contribution using combinations:
85 // C(evenPositions, evenCount) * C(oddPositions, oddCount) * recursive call
86 int contribution = (int) (combinations[evenPositions][evenCount]
87 * combinations[oddPositions][oddCount] % MOD
88 * dfs(currentDigit + 1, targetSum - evenCount * currentDigit,
89 evenPositions - evenCount, oddPositions - oddCount) % MOD);
90
91 result = (result + contribution) % MOD;
92 }
93 }
94
95 // Memoize and return result
96 return memo[currentDigit][targetSum][evenPositions][oddPositions] = result;
97 }
98}
99
1using ll = long long;
2const int MAX_SIZE = 80;
3const int MOD = 1e9 + 7;
4
5// Precomputed binomial coefficients table
6ll binomial[MAX_SIZE][MAX_SIZE];
7
8// Initialize binomial coefficients using Pascal's triangle
9auto init = [] {
10 binomial[0][0] = 1;
11 for (int i = 1; i < MAX_SIZE; ++i) {
12 binomial[i][0] = 1;
13 for (int j = 1; j <= i; ++j) {
14 binomial[i][j] = (binomial[i - 1][j] + binomial[i - 1][j - 1]) % MOD;
15 }
16 }
17 return 0;
18}();
19
20class Solution {
21public:
22 int countBalancedPermutations(string num) {
23 // Count frequency of each digit (0-9)
24 int digitCount[10]{};
25 int totalSum = 0;
26 for (char& ch : num) {
27 ++digitCount[ch - '0'];
28 totalSum += ch - '0';
29 }
30
31 // If total sum is odd, we can't split it equally
32 if (totalSum % 2) {
33 return 0;
34 }
35
36 int n = num.size();
37 int targetSum = totalSum / 2;
38 int evenPositions = n / 2; // Number of even indices (0, 2, 4, ...)
39 int oddPositions = (n + 1) / 2; // Number of odd indices (1, 3, 5, ...)
40
41 // DP memoization table
42 // dp[digit][remainingSum][evenSlotsLeft][oddSlotsLeft]
43 // -1 indicates uncomputed state
44 int dp[10][targetSum + 1][evenPositions + 1][oddPositions + 1];
45 memset(dp, -1, sizeof(dp));
46
47 // DFS with memoization to count valid arrangements
48 // Parameters:
49 // digit: current digit being processed (0-9)
50 // remainingSum: remaining sum needed for even positions
51 // evenSlotsLeft: remaining slots at even indices
52 // oddSlotsLeft: remaining slots at odd indices
53 auto dfs = [&](this auto&& dfs, int digit, int remainingSum,
54 int evenSlotsLeft, int oddSlotsLeft) -> int {
55 // Base case: processed all digits
56 if (digit > 9) {
57 // Valid only if all constraints are satisfied
58 return ((remainingSum | evenSlotsLeft | oddSlotsLeft) == 0 ? 1 : 0);
59 }
60
61 // Pruning: if no even slots left but sum remaining, impossible
62 if (evenSlotsLeft == 0 && remainingSum > 0) {
63 return 0;
64 }
65
66 // Return memoized result if already computed
67 if (dp[digit][remainingSum][evenSlotsLeft][oddSlotsLeft] != -1) {
68 return dp[digit][remainingSum][evenSlotsLeft][oddSlotsLeft];
69 }
70
71 int result = 0;
72
73 // Try all possible distributions of current digit
74 // evenCount: number of this digit placed at even indices
75 for (int evenCount = 0; evenCount <= min(digitCount[digit], evenSlotsLeft); ++evenCount) {
76 int oddCount = digitCount[digit] - evenCount;
77
78 // Check if distribution is valid
79 if (oddCount >= 0 && oddCount <= oddSlotsLeft &&
80 evenCount * digit <= remainingSum) {
81
82 // Calculate contribution using binomial coefficients
83 // C(evenSlotsLeft, evenCount) * C(oddSlotsLeft, oddCount)
84 ll ways = binomial[evenSlotsLeft][evenCount] *
85 binomial[oddSlotsLeft][oddCount] % MOD;
86
87 // Multiply by number of ways to arrange remaining digits
88 ways = ways * dfs(digit + 1,
89 remainingSum - evenCount * digit,
90 evenSlotsLeft - evenCount,
91 oddSlotsLeft - oddCount) % MOD;
92
93 result = (result + ways) % MOD;
94 }
95 }
96
97 // Memoize and return result
98 return dp[digit][remainingSum][evenSlotsLeft][oddSlotsLeft] = result;
99 };
100
101 // Start DFS from digit 0, with target sum for even positions
102 return dfs(0, targetSum, evenPositions, oddPositions);
103 }
104};
105
1// Maximum size for combinations array
2const MAX_SIZE = 80;
3// Modulo value for preventing integer overflow
4const MODULO = 10 ** 9 + 7;
5
6// Precomputed combinations table: combinations[n][k] = C(n, k) = n! / (k! * (n-k)!)
7const combinations: number[][] = Array.from({ length: MAX_SIZE }, () => Array(MAX_SIZE).fill(0));
8
9// Initialize combinations table using Pascal's triangle
10(function initializeCombinations() {
11 combinations[0][0] = 1;
12 for (let i = 1; i < MAX_SIZE; i++) {
13 combinations[i][0] = 1; // C(i, 0) = 1
14 for (let j = 1; j <= i; j++) {
15 // Pascal's triangle formula: C(i, j) = C(i-1, j) + C(i-1, j-1)
16 combinations[i][j] = (combinations[i - 1][j] + combinations[i - 1][j - 1]) % MODULO;
17 }
18 }
19})();
20
21/**
22 * Counts the number of balanced permutations of the given number string.
23 * A balanced permutation has equal sum in its left and right halves.
24 *
25 * @param num - The input number as a string
26 * @returns The count of balanced permutations modulo 10^9 + 7
27 */
28function countBalancedPermutations(num: string): number {
29 // Count frequency of each digit (0-9)
30 const digitFrequency = Array(10).fill(0);
31 let totalSum = 0;
32
33 // Calculate digit frequencies and total sum
34 for (const char of num) {
35 const digit = +char;
36 digitFrequency[digit]++;
37 totalSum += digit;
38 }
39
40 // If total sum is odd, no balanced permutation is possible
41 if (totalSum % 2 !== 0) {
42 return 0;
43 }
44
45 const numLength = num.length;
46 const leftHalfSize = Math.floor(numLength / 2);
47 const rightHalfSize = Math.floor((numLength + 1) / 2);
48 const targetSum = totalSum / 2;
49
50 // Memoization cache for dynamic programming
51 const memoCache: Record<string, number> = {};
52
53 /**
54 * Recursive function with memoization to count valid arrangements
55 *
56 * @param currentDigit - Current digit being considered (0-9)
57 * @param remainingSum - Remaining sum needed for left half
58 * @param leftSlots - Available positions in left half
59 * @param rightSlots - Available positions in right half
60 * @returns Number of valid arrangements from current state
61 */
62 const calculateArrangements = (
63 currentDigit: number,
64 remainingSum: number,
65 leftSlots: number,
66 rightSlots: number
67 ): number => {
68 // Base case: all digits processed
69 if (currentDigit > 9) {
70 // Valid arrangement if all constraints are satisfied
71 return (remainingSum | leftSlots | rightSlots) === 0 ? 1 : 0;
72 }
73
74 // Pruning: impossible to achieve remaining sum with remaining slots
75 if (leftSlots === 0 && remainingSum > 0) {
76 return 0;
77 }
78
79 // Create memoization key
80 const memoKey = `${currentDigit},${remainingSum},${leftSlots},${rightSlots}`;
81 if (memoKey in memoCache) {
82 return memoCache[memoKey];
83 }
84
85 let totalArrangements = 0;
86
87 // Try all possible distributions of current digit between left and right halves
88 for (let leftCount = 0; leftCount <= Math.min(digitFrequency[currentDigit], leftSlots); leftCount++) {
89 const rightCount = digitFrequency[currentDigit] - leftCount;
90
91 // Check if this distribution is valid
92 if (rightCount >= 0 &&
93 rightCount <= rightSlots &&
94 leftCount * currentDigit <= remainingSum) {
95
96 // Calculate arrangements for this distribution using combinations
97 // C(leftSlots, leftCount) * C(rightSlots, rightCount) * recursive call
98 const arrangementCount = Number(
99 (((BigInt(combinations[leftSlots][leftCount]) *
100 BigInt(combinations[rightSlots][rightCount])) % BigInt(MODULO)) *
101 BigInt(calculateArrangements(
102 currentDigit + 1,
103 remainingSum - leftCount * currentDigit,
104 leftSlots - leftCount,
105 rightSlots - rightCount
106 ))) % BigInt(MODULO)
107 );
108
109 totalArrangements = (totalArrangements + arrangementCount) % MODULO;
110 }
111 }
112
113 // Store result in cache
114 memoCache[memoKey] = totalArrangements;
115 return totalArrangements;
116 };
117
118 // Start recursion from digit 0
119 return calculateArrangements(0, targetSum, leftHalfSize, rightHalfSize);
120}
121
Time and Space Complexity
The time complexity is O(|Σ| × n² × (n + |Σ|))
, where |Σ| = 10
represents the number of different digits (0-9), and n
is the length of the input string.
Breaking down the complexity:
- The DFS function has 4 parameters:
i
,j
,a
,b
i
ranges from 0 to 9, giving us|Σ| = 10
possible valuesj
represents the remaining sum needed, ranging from 0 tos/2
, which is at most9n/2
(worst case all digits are 9), soO(n)
statesa
represents remaining positions for even indices, ranging from 0 ton/2
, soO(n)
statesb
represents remaining positions for odd indices, ranging from 0 to(n+1)/2
, soO(n)
states- Total number of unique states cached:
O(|Σ| × n × n × n) = O(|Σ| × n³)
For each state, the inner loop iterates at most min(cnt[i], a) + 1
times, which is O(n)
in the worst case. The combination calculations comb(a, l)
and comb(b, r)
each take O(n)
time.
Therefore, the total time complexity is O(|Σ| × n³ × n) = O(|Σ| × n⁴)
.
However, considering the tighter analysis where j
is bounded by the sum (at most O(n)
) and the actual work done per state, the time complexity can be more precisely stated as O(|Σ| × n² × (n + |Σ|))
.
The space complexity is O(|Σ| × n³)
for the memoization cache, which stores all possible states of the DFS function. Given that |Σ| = 10
is constant, this can also be written as O(n³)
or more precisely as O(n² × |Σ|²)
when considering the distribution of states across different parameters.
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrect Position Count for Odd/Even Indices
Pitfall: A frequent mistake is incorrectly calculating the number of odd and even positions, especially for odd-length strings. Developers often use n//2
for both groups or confuse 0-based indexing.
Issue Example:
# WRONG: This incorrectly assumes equal positions odd_positions = n // 2 even_positions = n // 2 # Incorrect for odd-length strings!
Solution:
For a string of length n
with 0-based indexing:
- Even indices (0, 2, 4, ...): Count =
(n + 1) // 2
- Odd indices (1, 3, 5, ...): Count =
n // 2
# CORRECT: odd_positions = n // 2 even_positions = (n + 1) // 2
2. Integer Overflow in Combinatorial Calculations
Pitfall: When calculating combinations and multiplying large numbers, intermediate results can overflow even before applying modulo.
Issue Example:
# WRONG: Overflow risk before modulo result = comb(a, l) * comb(b, r) * recursive_result % MOD
Solution: Apply modulo after each multiplication step:
# CORRECT: Apply modulo incrementally arrangement_count = comb(left_slots, left_count) % MOD arrangement_count = (arrangement_count * comb(right_slots, right_count)) % MOD total_ways = (total_ways + arrangement_count * remaining_ways) % MOD
3. Inefficient Handling of Duplicate Digits
Pitfall: Not properly accounting for duplicate digits leads to counting the same permutation multiple times.
Issue Example:
# WRONG: Treating each digit occurrence separately for digit in num: # Process each digit individually
Solution: Group digits by value and process each unique digit once:
# CORRECT: Use Counter to group duplicates digit_frequency = Counter(digits) # Process each unique digit (0-9) once with its count
4. Missing Early Termination Conditions
Pitfall: Not implementing pruning conditions causes unnecessary recursive calls, leading to Time Limit Exceeded (TLE).
Issue Example:
# WRONG: No early termination
def count_ways(digit, target_sum, left_slots, right_slots):
if digit > 9:
return 1 if conditions_met else 0
# Continue processing even when impossible
Solution: Add pruning conditions:
# CORRECT: Early termination if left_slots == 0 and target_sum > 0: return 0 # Impossible to achieve target if left_count * digit > target_sum: continue # Skip invalid distributions
5. Incorrect Base Case Validation
Pitfall: The base case might not properly validate all three conditions (target_sum, left_slots, right_slots all being zero).
Issue Example:
# WRONG: Incomplete validation if digit > 9: return 1 if target_sum == 0 else 0 # Missing slot checks!
Solution: Validate all conditions:
# CORRECT: Complete validation if digit > 9: return 1 if (target_sum == 0 and left_slots == 0 and right_slots == 0) else 0
What data structure does Breadth-first search typically uses to store intermediate states?
Recommended Readings
Math for Technical Interviews How much math do I need to know for technical interviews The short answer is about high school level math Computer science is often associated with math and some universities even place their computer science department under the math faculty However the reality is that you
What is Dynamic Programming Prerequisite DFS problems dfs_intro Backtracking problems backtracking Memoization problems memoization_intro Pruning problems backtracking_pruning Dynamic programming is an algorithmic optimization technique that breaks down a complicated problem into smaller overlapping sub problems in a recursive manner and uses solutions to the sub problems to construct a solution
Backtracking Template Prereq DFS with States problems dfs_with_states Combinatorial search problems Combinatorial search problems involve finding groupings and assignments of objects that satisfy certain conditions Finding all permutations combinations subsets and solving Sudoku are classic combinatorial problems The time complexity of combinatorial problems often grows rapidly with the size of
Want a Structured Path to Master System Design Too? Don’t Miss This!