3374. First Letter Capitalization II
Problem Description
We are given a table named user_content
with two columns: content_id
and content_text
. The goal is to transform the text in the content_text
column by applying the following rules:
- Convert the first letter of each word to uppercase and the remaining letters to lowercase.
- Special handling for words containing special characters:
- For words connected with a hyphen
-
, both parts should be capitalized (e.g.,top-rated
becomesTop-Rated
).
- For words connected with a hyphen
- All other formatting and spacing should remain unchanged.
The solution should return a result table that includes both the original content_text
and the modified text following the above rules.
Intuition
To address this problem, we need to process each word within content_text
by adhering to specific transformation rules. The approach involves iterating through each word, adjusting its capitalization, and preserving the original spacing and formatting.
Here's a step-by-step breakdown of the solution approach:
- Split the Text: Break the
content_text
into individual words. This allows us to handle each word separately. - Handle Hyphenated Words: For words containing hyphens, split the word on the hyphen and capitalize both parts. This ensures words like
quick-brown
becomeQuick-Brown
. - Capitalize Words: Convert the first letter of all other words to uppercase and the remaining letters to lowercase. Words without hyphens can be transformed directly using the
capitalize()
method. - Join and Reconstruct: After transforming each part of the text, join the words back together while maintaining the original spaces.
- Apply Transformation: Use a function that applies these steps to each entry in
content_text
, creating a new columnconverted_text
in the DataFrame.
Through this systematic approach, the problem can be effectively solved, ensuring that both hyphenated and non-hyphenated words are correctly capitalized in accordance with the rules provided.
Solution Approach
The implementation of the solution involves using the pandas library to manipulate the data within the DataFrame. Here's a detailed walkthrough of the solution:
-
Import Pandas: We start by importing the pandas library, which provides data structures and functions for handling DataFrames efficiently.
import pandas as pd
-
Define the Function: We define a function named
capitalize_content
that processes the DataFrame.def capitalize_content(user_content: pd.DataFrame) -> pd.DataFrame:
-
Helper Function Define
convert_text
: Inside thecapitalize_content
function, we define a helper functionconvert_text
that will handle the text transformation. This function takes a stringtext
as input and returns a transformed string.def convert_text(text: str) -> str:
-
Process Each Word: We use a nested list comprehension to process each word in
text
. The outer comprehension iterates over each word split by spaces, while the inner comprehension splits any hyphenated words and capitalizes each part.return " ".join( ( "-".join([part.capitalize() for part in word.split("-")]) if "-" in word else word.capitalize() ) for word in text.split(" ") )
-
Hyphen Handling: If a word contains a hyphen, it is split on the hyphen, and each part is capitalized before being joined back together.
-
-
Apply Text Transformation: We use the
apply()
method of pandas to applyconvert_text
to thecontent_text
column, thus creating a new columnconverted_text
.user_content["converted_text"] = user_content["content_text"].apply(convert_text)
-
Rename Column for Output: We rename the original
content_text
column tooriginal_text
for clarity in the output DataFrame.return user_content.rename(columns={"content_text": "original_text"})[ ["content_id", "original_text", "converted_text"] ]
Through this approach, the solution efficiently transforms the text while maintaining the structure and format of the original content. The use of list comprehensions in tandem with pandas methods ensures that the data is processed quickly and accurately.
Ready to land your dream job?
Unlock your dream job with a 2-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through a simple example to see how the solution approach transforms the text in the user_content
table.
Example Data:
Suppose the user_content
table contains the following data:
content_id | content_text |
---|---|
1 | "hello world" |
2 | "pandas-is awesome" |
3 | "multi-part title" |
Transformation Process:
-
Split the Text:
- For
content_id
1:"hello world"
splits into words:["hello", "world"]
. - For
content_id
2:"pandas-is awesome"
splits into words:["pandas-is", "awesome"]
. - For
content_id
3:"multi-part title"
splits into words:["multi-part", "title"]
.
- For
-
Handle Hyphenated Words:
- For
content_id
2: Split"pandas-is"
gives["pandas", "is"]
. Each piece is capitalized to form"Pandas-Is"
. - For
content_id
3: Split"multi-part"
results in["multi", "part"]
. Each piece is modified to form"Multi-Part"
.
- For
-
Capitalize Words:
- For
content_id
1:"hello"
becomes"Hello"
and"world"
becomes"World"
. - For
content_id
2:"awesome"
becomes"Awesome"
. - For
content_id
3:"title"
is transformed into"Title"
.
- For
-
Join and Reconstruct:
- For
content_id
1: Words are joined to form"Hello World"
. - For
content_id
2: Hyphenated and single words create"Pandas-Is Awesome"
. - For
content_id
3: The combination results in"Multi-Part Title"
.
- For
-
Apply Transformation to DataFrame:
- The modified texts are set in the new
converted_text
column.
- The modified texts are set in the new
Final Result:
content_id | original_text | converted_text |
---|---|---|
1 | hello world | Hello World |
2 | pandas-is awesome | Pandas-Is Awesome |
3 | multi-part title | Multi-Part Title |
This output shows each original text alongside its transformed version, demonstrating the conversion rules in action.
Solution Implementation
1import pandas as pd
2
3def capitalize_content(user_content: pd.DataFrame) -> pd.DataFrame:
4 """
5 Capitalizes the content of the provided DataFrame and returns a new DataFrame
6 with the original and converted text.
7
8 Args:
9 user_content (pd.DataFrame): DataFrame containing 'content_id' and 'content_text'.
10
11 Returns:
12 pd.DataFrame: A DataFrame with 'content_id', 'original_text', and 'converted_text'.
13 """
14 def convert_text(text: str) -> str:
15 """Capitalizes each word in the provided text."""
16 return " ".join(
17 (
18 # Capitalizes each part of hyphenated words
19 "-".join([part.capitalize() for part in word.split("-")])
20 if "-" in word
21 else word.capitalize()
22 )
23 for word in text.split(" ") # Splits the text into individual words
24 )
25
26 # Apply the convert_text function to the 'content_text' column
27 user_content["converted_text"] = user_content["content_text"].apply(convert_text)
28
29 # Rename the 'content_text' column to 'original_text'
30 return user_content.rename(columns={"content_text": "original_text"})[
31 ["content_id", "original_text", "converted_text"] # Select and order the columns
32 ]
33
1import java.util.ArrayList;
2import java.util.List;
3import java.util.stream.Collectors;
4
5public class CapitalizeContent {
6
7 // Class representing the data structure which contains content ID and text
8 public static class Content {
9 private int contentId;
10 private String originalText;
11 private String convertedText;
12
13 public Content(int contentId, String originalText, String convertedText) {
14 this.contentId = contentId;
15 this.originalText = originalText;
16 this.convertedText = convertedText;
17 }
18
19 public int getContentId() {
20 return contentId;
21 }
22
23 public String getOriginalText() {
24 return originalText;
25 }
26
27 public String getConvertedText() {
28 return convertedText;
29 }
30 }
31
32 // Method to capitalize each word in a given string
33 private static String convertText(String text) {
34 // Splitting the text into words, capitalizing each word, and rejoining them
35 return java.util.Arrays.stream(text.split(" "))
36 .map(word -> {
37 // Checking for hyphenated words
38 if (word.contains("-")) {
39 return java.util.Arrays.stream(word.split("-"))
40 .map(part -> part.substring(0, 1).toUpperCase() + part.substring(1).toLowerCase())
41 .collect(Collectors.joining("-"));
42 } else {
43 return word.substring(0, 1).toUpperCase() + word.substring(1).toLowerCase();
44 }
45 })
46 .collect(Collectors.joining(" "));
47 }
48
49 // Main method to handle input and output of contents
50 public static List<Content> capitalizeContent(List<Content> userContent) {
51 List<Content> newContentList = new ArrayList<>();
52
53 // Iterating through content list
54 for (Content content : userContent) {
55 String originalText = content.getOriginalText();
56 String convertedText = convertText(originalText); // Capitalizing text
57 Content newContent = new Content(content.getContentId(), originalText, convertedText); // Creating new content object
58 newContentList.add(newContent); // Adding to the new list
59 }
60
61 return newContentList;
62 }
63
64 // Main program execution for testing
65 public static void main(String[] args) {
66 List<Content> data = List.of(
67 new Content(1, "hello world", ""),
68 new Content(2, "java-programming", ""),
69 new Content(3, "java and pandas", "")
70 );
71
72 List<Content> result = capitalizeContent(data);
73
74 // Output the results
75 for (Content content : result) {
76 System.out.println("Content ID: " + content.getContentId());
77 System.out.println("Original Text: " + content.getOriginalText());
78 System.out.println("Converted Text: " + content.getConvertedText());
79 }
80 }
81}
82
1#include <iostream>
2#include <string>
3#include <vector>
4#include <sstream>
5#include <algorithm>
6#include <cctype>
7
8// This function capitalizes each word in the provided text.
9std::string convertText(const std::string& text) {
10 std::istringstream stream(text);
11 std::string word;
12 std::string result;
13
14 while (stream >> word) {
15 for (size_t i = 0; i < word.size(); ++i) {
16 // Capitalize the first letter of each part of hyphenated words
17 if (i == 0 || word[i - 1] == '-') {
18 word[i] = std::toupper(word[i]);
19 } else {
20 word[i] = std::tolower(word[i]);
21 }
22 }
23 if (!result.empty()) {
24 result += " ";
25 }
26 result += word;
27 }
28
29 return result;
30}
31
32// Define a struct to store content information
33struct Content {
34 int contentId;
35 std::string originalText;
36 std::string convertedText;
37};
38
39// This function capitalizes the content of the provided vector of Content
40std::vector<Content> capitalizeContent(const std::vector<Content>& userContent) {
41 std::vector<Content> result;
42 for (const auto& content : userContent) {
43 Content newContent;
44 newContent.contentId = content.contentId;
45 newContent.originalText = content.originalText;
46 newContent.convertedText = convertText(content.originalText);
47 result.push_back(newContent);
48 }
49 return result;
50}
51
52// Optional: Function to print the content for demonstration purposes
53void printContent(const std::vector<Content>& contentList) {
54 for (const auto& content : contentList) {
55 std::cout << "ID: " << content.contentId
56 << ", Original: " << content.originalText
57 << ", Converted: " << content.convertedText << std::endl;
58 }
59}
60
61int main() {
62 // Sample data
63 std::vector<Content> data = {
64 {1, "hello world"},
65 {2, "sample-text to convert"},
66 {3, "another example"}
67 };
68
69 // Capitalize content
70 std::vector<Content> capitalizedData = capitalizeContent(data);
71
72 // Print results
73 printContent(capitalizedData);
74
75 return 0;
76}
77
1import * as pd from 'pandas-js';
2
3// Function to capitalize the content of a DataFrame
4function capitalize_content(user_content: pd.DataFrame): pd.DataFrame {
5 /**
6 * Capitalizes the content of the provided DataFrame and returns a new DataFrame
7 * with the original and converted text.
8 *
9 * @param user_content - DataFrame containing 'content_id' and 'content_text'.
10 * @returns DataFrame with 'content_id', 'original_text', and 'converted_text'.
11 */
12
13 // Helper function to capitalize each word in a text string
14 function convert_text(text: string): string {
15 return text.split(" ").map(word => {
16 // Capitalize each part of hyphenated words
17 return word.includes("-")
18 ? word.split("-").map(part => capitalize(part)).join("-")
19 : capitalize(word);
20 }).join(" ");
21 }
22
23 // Helper function to capitalize a single word
24 function capitalize(word: string): string {
25 return word.charAt(0).toUpperCase() + word.slice(1).toLowerCase();
26 }
27
28 // Apply the convert_text function to the 'content_text' column
29 user_content['converted_text'] = user_content['content_text'].apply(convert_text);
30
31 // Rename the 'content_text' column to 'original_text'
32 user_content = user_content.rename({ 'content_text': 'original_text' });
33
34 // Select and order the columns
35 return user_content.select(['content_id', 'original_text', 'converted_text']);
36}
37
Time and Space Complexity
The time complexity of the code is O(n * m * k)
, where n
is the number of rows in the DataFrame, m
is the average number of words per content_text
, and k
is the average length of each word. This complexity results from iterating over each row in the DataFrame and processing each word in the content_text
strings.
The space complexity is O(n * m * k)
, primarily due to the storage of the converted strings in the new column converted_text
. This involves an additional DataFrame column that scales with the input size.
Learn more about how to find time and space complexity quickly.
Which type of traversal does breadth first search do?
Recommended Readings
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Recursion Recursion is one of the most important concepts in computer science Simply speaking recursion is the process of a function calling itself Using a real life analogy imagine a scenario where you invite your friends to lunch https algomonster s3 us east 2 amazonaws com recursion jpg You first
Runtime Overview When learning about algorithms and data structures you'll frequently encounter the term time complexity This concept is fundamental in computer science and offers insights into how long an algorithm takes to complete given a certain input size What is Time Complexity Time complexity represents the amount of time
Want a Structured Path to Master System Design Too? Don’t Miss This!