3318. Find X-Sum of All K-Long Subarrays I
Problem Description
You are given an array nums
of n
integers and two integers k
and x
.
The x-sum of an array is calculated using the following procedure:
- Count the occurrences of all elements in the array
- Keep only the occurrences of the top
x
most frequent elements- If two elements have the same number of occurrences, the element with the bigger value is considered more frequent
- Calculate the sum of the resulting array
Note: If an array has less than x
distinct elements, its x-sum is simply the sum of the entire array.
Your task is to return an integer array answer
of length n - k + 1
where answer[i]
is the x-sum of the subarray nums[i..i + k - 1]
.
For example, if we have a subarray [2, 1, 3, 1, 1, 2]
with x = 2
:
- Count occurrences:
1
appears 3 times,2
appears 2 times,3
appears 1 time - Top 2 most frequent:
1
(3 occurrences) and2
(2 occurrences) - The x-sum would be:
3 × 1 + 2 × 2 = 7
The problem requires calculating the x-sum for each sliding window of size k
as it moves through the array from left to right.
Intuition
The key challenge is efficiently maintaining the top x
most frequent elements as we slide the window of size k
through the array.
When we move the sliding window by one position, only two elements change: one element leaves the window (from the left) and one element enters (from the right). This means we don't need to recalculate everything from scratch - we can update our data structures incrementally.
The main insight is to use two ordered sets to partition elements based on their frequency and value:
- Set
l
contains the topx
most frequent elements (these contribute to the x-sum) - Set
r
contains all other elements (these don't contribute to the x-sum)
Each element is stored as a tuple (frequency, value)
so that ordering naturally prioritizes by frequency first, then by value if frequencies are equal.
When an element's frequency changes (either entering or leaving the window), we need to:
- Remove it from its current position in either
l
orr
- Update its frequency in our counter
- Re-insert it into the appropriate set based on its new frequency
The brilliance of this approach is maintaining the invariant that l
always contains exactly x
elements (or fewer if there aren't enough distinct elements). After each update, we rebalance:
- If
l
has fewer thanx
elements andr
is not empty, we move the largest element fromr
tol
- If
l
has more thanx
elements, we move the smallest element froml
tor
By tracking the sum s
of elements in l
incrementally (adding when elements move into l
, subtracting when they leave), we can compute each window's x-sum in constant time after the rebalancing.
This sliding window technique with two ordered sets allows us to efficiently maintain the top x
elements without repeatedly sorting or scanning the entire window, achieving O(log k)
time per window movement.
Learn more about Sliding Window and Heap (Priority Queue) patterns.
Solution Approach
The solution uses a hash table combined with two ordered sets to efficiently track the top x
most frequent elements in each sliding window.
Data Structures:
cnt
: A Counter (hash table) to track the frequency of each element in the current windowl
: A SortedList containing the topx
most frequent elements as tuples(frequency, value)
r
: A SortedList containing the remaining elements not in the topx
s
: The running sum of elements in setl
(the x-sum)
Helper Functions:
-
remove(v)
: Removes elementv
from its current position in eitherl
orr
- Creates tuple
p = (cnt[v], v)
with current frequency - If
p
is inl
, subtracts its contribution from sums
and removes it - Otherwise, removes it from
r
- Creates tuple
-
add(v)
: Adds elementv
to the appropriate set based on its new frequency- Creates tuple
p = (cnt[v], v)
with updated frequency - If
l
is empty orp
is greater than the smallest element inl
, adds tol
and updates sum - Otherwise, adds to
r
- Creates tuple
Main Algorithm:
-
Initialize the first window (elements 0 to k-1):
- For each element, remove it from its old position, increment its count, then add it back
- This builds up the initial frequency counts and populates the sets
-
Process each window position:
-
After the window is fully formed (when
j = i - k + 1 >= 0
):a. Rebalance the sets to ensure
l
contains exactlyx
elements:- While
l
has fewer thanx
elements andr
is not empty:- Pop the largest element from
r
and add tol
- Update sum
s
accordingly
- Pop the largest element from
- While
l
has more thanx
elements:- Pop the smallest element from
l
and add tor
- Update sum
s
accordingly
- Pop the smallest element from
b. Record the x-sum:
ans[j] = s
c. Slide the window:
- Remove the leftmost element
nums[j]
from the window - Call
remove(nums[j])
to remove it from sets - Decrement
cnt[nums[j]]
- Call
add(nums[j])
to re-add with updated frequency
- While
-
The time complexity is O(n × log k)
where n
is the array length, as each element insertion/removal in the SortedList takes O(log k)
time. The space complexity is O(n)
for storing the counter and ordered sets.
This approach efficiently maintains the x-sum by only updating the elements that change, rather than recalculating from scratch for each window.
Ready to land your dream job?
Unlock your dream job with a 5-minute evaluator for a personalized learning plan!
Start EvaluatorExample Walkthrough
Let's walk through the solution with a concrete example:
nums = [1, 1, 2, 2, 3, 4, 2, 3]
,k = 6
,x = 2
We need to find the x-sum for each window of size 6.
Initial Setup:
cnt = {}
(frequency counter)l = []
(top x elements)r = []
(remaining elements)s = 0
(sum of elements in l)
Building First Window [1, 1, 2, 2, 3, 4]:
Process each element:
-
nums[0] = 1
:- Remove 1 (not present), update
cnt[1] = 1
, add(1, 1)
tol
l = [(1, 1)]
,s = 1
- Remove 1 (not present), update
-
nums[1] = 1
:- Remove
(1, 1)
froml
, updatecnt[1] = 2
, add(2, 1)
tol
l = [(2, 1)]
,s = 3
- Remove
-
nums[2] = 2
:- Remove 2 (not present), update
cnt[2] = 1
, add(1, 2)
tol
l = [(1, 2), (2, 1)]
,s = 5
- Remove 2 (not present), update
-
nums[3] = 2
:- Remove
(1, 2)
froml
, updatecnt[2] = 2
, add(2, 2)
tol
l = [(2, 1), (2, 2)]
,s = 7
- Remove
-
nums[4] = 3
:- Remove 3 (not present), update
cnt[3] = 1
, add(1, 3)
tor
(sincel
has 2 elements and(1, 3) < (2, 1)
) l = [(2, 1), (2, 2)]
,r = [(1, 3)]
,s = 7
- Remove 3 (not present), update
-
nums[5] = 4
:- Remove 4 (not present), update
cnt[4] = 1
, add(1, 4)
tor
l = [(2, 1), (2, 2)]
,r = [(1, 3), (1, 4)]
,s = 7
- Remove 4 (not present), update
Window 1 Complete:
- Current frequencies:
{1: 2, 2: 2, 3: 1, 4: 1}
l = [(2, 1), (2, 2)]
contains the top 2 most frequent- x-sum = 7 (2×1 + 2×2)
answer[0] = 7
Sliding to Window 2 [1, 2, 2, 3, 4, 2]:
Remove nums[0] = 1
(the element leaving):
- Remove
(2, 1)
froml
,s = 4
- Update
cnt[1] = 1
- Add
(1, 1)
tor
since(1, 1) < (2, 2)
l = [(2, 2)]
,r = [(1, 1), (1, 3), (1, 4)]
Process nums[6] = 2
(the element entering):
- Remove
(2, 2)
froml
,s = 0
- Update
cnt[2] = 3
- Add
(3, 2)
tol
l = [(3, 2)]
,r = [(1, 1), (1, 3), (1, 4)]
,s = 6
Rebalance:
Since |l| = 1 < x = 2
, move the largest from r
to l
:
- Move
(1, 4)
fromr
tol
l = [(1, 4), (3, 2)]
,r = [(1, 1), (1, 3)]
,s = 10
Window 2 Complete:
- Current frequencies:
{1: 1, 2: 3, 3: 1, 4: 1}
l = [(1, 4), (3, 2)]
contains top 2 (2 with freq 3, and 4 with freq 1)- x-sum = 10 (1×4 + 3×2)
answer[1] = 10
Sliding to Window 3 [2, 2, 3, 4, 2, 3]:
Remove nums[1] = 1
:
- Remove
(1, 1)
fromr
- Update
cnt[1] = 0
Process nums[7] = 3
:
- Remove
(1, 3)
fromr
- Update
cnt[3] = 2
- Add
(2, 3)
tol
since(2, 3) > (1, 4)
l = [(1, 4), (2, 3), (3, 2)]
,s = 16
Rebalance:
Since |l| = 3 > x = 2
, move the smallest from l
to r
:
- Move
(1, 4)
froml
tor
l = [(2, 3), (3, 2)]
,r = [(1, 4)]
,s = 12
Window 3 Complete:
- Current frequencies:
{2: 3, 3: 2, 4: 1}
l = [(2, 3), (3, 2)]
contains top 2 (2 with freq 3, and 3 with freq 2)- x-sum = 12 (2×3 + 3×2)
answer[2] = 12
Final Answer: [7, 10, 12]
This example demonstrates how the algorithm efficiently maintains the top x elements using two ordered sets, rebalancing after each window slide to ensure we always track the correct x-sum.
Solution Implementation
1class Solution:
2 def findXSum(self, nums: List[int], k: int, x: int) -> List[int]:
3 """
4 Find the x-sum for each sliding window of size k.
5 The x-sum is the sum of the top x most frequent elements (frequency * value).
6
7 Args:
8 nums: Input array of integers
9 k: Size of the sliding window
10 x: Number of top frequent elements to consider
11
12 Returns:
13 List of x-sums for each window
14 """
15
16 def add_element_to_sets(value: int) -> None:
17 """Add an element to either top_x_elements or remaining_elements based on priority."""
18 if element_count[value] == 0:
19 return
20
21 # Create priority tuple (frequency, value) for comparison
22 priority_tuple = (element_count[value], value)
23
24 # If top set is empty or new element has higher priority than minimum in top set
25 if top_x_elements and priority_tuple > top_x_elements[0]:
26 nonlocal current_sum
27 current_sum += priority_tuple[0] * priority_tuple[1] # frequency * value
28 top_x_elements.add(priority_tuple)
29 else:
30 remaining_elements.add(priority_tuple)
31
32 def remove_element_from_sets(value: int) -> None:
33 """Remove an element from either top_x_elements or remaining_elements."""
34 if element_count[value] == 0:
35 return
36
37 priority_tuple = (element_count[value], value)
38
39 if priority_tuple in top_x_elements:
40 nonlocal current_sum
41 current_sum -= priority_tuple[0] * priority_tuple[1] # frequency * value
42 top_x_elements.remove(priority_tuple)
43 else:
44 remaining_elements.remove(priority_tuple)
45
46 # Initialize data structures
47 top_x_elements = SortedList() # Stores top x frequent elements
48 remaining_elements = SortedList() # Stores remaining elements
49 element_count = Counter() # Tracks frequency of each element
50 current_sum = 0 # Current x-sum
51 n = len(nums)
52 result = [0] * (n - k + 1) # Result array for all windows
53
54 # Process each element
55 for i, current_value in enumerate(nums):
56 # Update element in the window
57 remove_element_from_sets(current_value)
58 element_count[current_value] += 1
59 add_element_to_sets(current_value)
60
61 # Calculate window start index
62 window_start = i - k + 1
63
64 # Skip if window is not complete yet
65 if window_start < 0:
66 continue
67
68 # Balance the sets: ensure top_x_elements has exactly x elements
69 # Move elements from remaining_elements to top_x_elements if needed
70 while remaining_elements and len(top_x_elements) < x:
71 element_to_promote = remaining_elements.pop()
72 top_x_elements.add(element_to_promote)
73 current_sum += element_to_promote[0] * element_to_promote[1]
74
75 # Move excess elements from top_x_elements to remaining_elements
76 while len(top_x_elements) > x:
77 element_to_demote = top_x_elements.pop(0)
78 current_sum -= element_to_demote[0] * element_to_demote[1]
79 remaining_elements.add(element_to_demote)
80
81 # Store the x-sum for current window
82 result[window_start] = current_sum
83
84 # Remove the leftmost element from window for next iteration
85 leftmost_element = nums[window_start]
86 remove_element_from_sets(leftmost_element)
87 element_count[leftmost_element] -= 1
88 if element_count[leftmost_element] > 0:
89 add_element_to_sets(leftmost_element)
90
91 return result
92
1class Solution {
2 // TreeSet to maintain top x elements (sorted by frequency desc, then value desc)
3 private TreeSet<int[]> topElements = new TreeSet<>((a, b) ->
4 a[0] == b[0] ? a[1] - b[1] : a[0] - b[0]);
5
6 // TreeSet to maintain remaining elements (same comparator)
7 private TreeSet<int[]> remainingElements = new TreeSet<>(topElements.comparator());
8
9 // Map to track frequency count of each number
10 private Map<Integer, Integer> frequencyMap = new HashMap<>();
11
12 // Current sum of top x elements
13 private int currentSum;
14
15 /**
16 * Finds the x-sum for each k-length sliding window in the array.
17 * X-sum is the sum of (value * frequency) for the x most frequent elements.
18 *
19 * @param nums The input array
20 * @param k The window size
21 * @param x The number of top frequent elements to consider
22 * @return Array containing x-sum for each window
23 */
24 public int[] findXSum(int[] nums, int k, int x) {
25 int n = nums.length;
26 int[] result = new int[n - k + 1];
27
28 for (int i = 0; i < n; ++i) {
29 int currentValue = nums[i];
30
31 // Remove old frequency entry before updating
32 removeFromSets(currentValue);
33
34 // Update frequency count
35 frequencyMap.merge(currentValue, 1, Integer::sum);
36
37 // Add back with new frequency
38 addToSets(currentValue);
39
40 // Calculate window starting index
41 int windowStart = i - k + 1;
42
43 // Skip if window is not complete yet
44 if (windowStart < 0) {
45 continue;
46 }
47
48 // Move elements from remaining to top if needed
49 while (!remainingElements.isEmpty() && topElements.size() < x) {
50 int[] element = remainingElements.pollLast();
51 currentSum += element[0] * element[1]; // frequency * value
52 topElements.add(element);
53 }
54
55 // Move excess elements from top to remaining
56 while (topElements.size() > x) {
57 int[] element = topElements.pollFirst();
58 currentSum -= element[0] * element[1]; // frequency * value
59 remainingElements.add(element);
60 }
61
62 // Store the x-sum for current window
63 result[windowStart] = currentSum;
64
65 // Remove the element going out of window
66 removeFromSets(nums[windowStart]);
67 frequencyMap.merge(nums[windowStart], -1, Integer::sum);
68 addToSets(nums[windowStart]);
69 }
70
71 return result;
72 }
73
74 /**
75 * Removes an element's frequency entry from the appropriate set.
76 *
77 * @param value The value to remove
78 */
79 private void removeFromSets(int value) {
80 // Skip if value doesn't exist in frequency map
81 if (!frequencyMap.containsKey(value)) {
82 return;
83 }
84
85 // Create array with [frequency, value]
86 int[] element = new int[] {frequencyMap.get(value), value};
87
88 // Remove from appropriate set
89 if (topElements.contains(element)) {
90 topElements.remove(element);
91 currentSum -= element[0] * element[1]; // frequency * value
92 } else {
93 remainingElements.remove(element);
94 }
95 }
96
97 /**
98 * Adds an element's frequency entry to the appropriate set.
99 *
100 * @param value The value to add
101 */
102 private void addToSets(int value) {
103 // Skip if value doesn't exist in frequency map
104 if (!frequencyMap.containsKey(value)) {
105 return;
106 }
107
108 // Create array with [frequency, value]
109 int[] element = new int[] {frequencyMap.get(value), value};
110
111 // Add to top set if it's better than the minimum in top set
112 if (!topElements.isEmpty() &&
113 topElements.comparator().compare(topElements.first(), element) < 0) {
114 topElements.add(element);
115 currentSum += element[0] * element[1]; // frequency * value
116 } else {
117 remainingElements.add(element);
118 }
119 }
120}
121
1class Solution {
2public:
3 vector<int> findXSum(vector<int>& nums, int k, int x) {
4 using pii = pair<int, int>; // pair of (frequency, value)
5
6 // Two sets to maintain top x elements and remaining elements
7 set<pii> topX; // Stores the x most frequent elements
8 set<pii> remaining; // Stores elements not in top x
9 int xSum = 0; // Sum of (frequency * value) for top x elements
10
11 // Frequency map to track count of each element
12 unordered_map<int, int> frequency;
13
14 // Lambda function to add an element to the appropriate set
15 auto addElement = [&](int value) {
16 if (frequency[value] == 0) {
17 return;
18 }
19
20 pii element = {frequency[value], value};
21
22 // If topX is empty or current element should be in topX
23 if (!topX.empty() && element > *topX.begin()) {
24 xSum += element.first * element.second; // Add to sum
25 topX.insert(element);
26 } else {
27 remaining.insert(element);
28 }
29 };
30
31 // Lambda function to remove an element from its current set
32 auto removeElement = [&](int value) {
33 if (frequency[value] == 0) {
34 return;
35 }
36
37 pii element = {frequency[value], value};
38
39 // Try to find and remove from topX set
40 auto it = topX.find(element);
41 if (it != topX.end()) {
42 xSum -= element.first * element.second; // Subtract from sum
43 topX.erase(it);
44 } else {
45 // Remove from remaining set
46 remaining.erase(element);
47 }
48 };
49
50 vector<int> result;
51
52 // Sliding window approach
53 for (int i = 0; i < nums.size(); ++i) {
54 // Update frequency for current element
55 removeElement(nums[i]); // Remove old frequency entry
56 ++frequency[nums[i]]; // Increment frequency
57 addElement(nums[i]); // Add with new frequency
58
59 // Calculate window start index
60 int windowStart = i - k + 1;
61 if (windowStart < 0) {
62 continue; // Window not yet complete
63 }
64
65 // Balance the sets: move elements from remaining to topX if needed
66 while (!remaining.empty() && topX.size() < x) {
67 pii largestRemaining = *remaining.rbegin();
68 xSum += largestRemaining.first * largestRemaining.second;
69 remaining.erase(largestRemaining);
70 topX.insert(largestRemaining);
71 }
72
73 // Balance the sets: move excess elements from topX to remaining
74 while (topX.size() > x) {
75 pii smallestTop = *topX.begin();
76 xSum -= smallestTop.first * smallestTop.second;
77 topX.erase(smallestTop);
78 remaining.insert(smallestTop);
79 }
80
81 // Add current window's x-sum to result
82 result.push_back(xSum);
83
84 // Remove the element going out of window
85 removeElement(nums[windowStart]); // Remove old frequency entry
86 --frequency[nums[windowStart]]; // Decrement frequency
87 addElement(nums[windowStart]); // Add with new frequency
88 }
89
90 return result;
91 }
92};
93
1function findXSum(nums: number[], k: number, x: number): number[] {
2 // Custom comparator for sorting pairs by frequency (ascending) then value (ascending)
3 const comparePairs = (a: [number, number], b: [number, number]): number => {
4 if (a[0] !== b[0]) return a[0] - b[0];
5 return a[1] - b[1];
6 };
7
8 // Two sorted sets to maintain top x elements and remaining elements
9 // Using arrays with manual sorting to simulate C++ set behavior
10 let topX: [number, number][] = []; // Stores the x most frequent elements [frequency, value]
11 let remaining: [number, number][] = []; // Stores elements not in top x
12 let xSum = 0; // Sum of (frequency * value) for top x elements
13
14 // Frequency map to track count of each element
15 const frequency: Map<number, number> = new Map();
16
17 // Helper function to add an element to the appropriate set
18 const addElement = (value: number): void => {
19 const freq = frequency.get(value) || 0;
20 if (freq === 0) {
21 return;
22 }
23
24 const element: [number, number] = [freq, value];
25
26 // Determine which set to add the element to
27 if (topX.length > 0 && comparePairs(element, topX[0]) > 0) {
28 // Element should be in topX
29 xSum += element[0] * element[1]; // Add to sum
30 topX.push(element);
31 topX.sort(comparePairs); // Keep sorted
32 } else {
33 // Element should be in remaining
34 remaining.push(element);
35 remaining.sort(comparePairs); // Keep sorted
36 }
37 };
38
39 // Helper function to remove an element from its current set
40 const removeElement = (value: number): void => {
41 const freq = frequency.get(value) || 0;
42 if (freq === 0) {
43 return;
44 }
45
46 const element: [number, number] = [freq, value];
47
48 // Try to find and remove from topX set
49 const topXIndex = topX.findIndex(e => e[0] === element[0] && e[1] === element[1]);
50 if (topXIndex !== -1) {
51 xSum -= element[0] * element[1]; // Subtract from sum
52 topX.splice(topXIndex, 1);
53 } else {
54 // Try to remove from remaining set
55 const remainingIndex = remaining.findIndex(e => e[0] === element[0] && e[1] === element[1]);
56 if (remainingIndex !== -1) {
57 remaining.splice(remainingIndex, 1);
58 }
59 }
60 };
61
62 const result: number[] = [];
63
64 // Process each element using sliding window approach
65 for (let i = 0; i < nums.length; i++) {
66 // Update frequency for current element
67 removeElement(nums[i]); // Remove old frequency entry
68 frequency.set(nums[i], (frequency.get(nums[i]) || 0) + 1); // Increment frequency
69 addElement(nums[i]); // Add with new frequency
70
71 // Calculate window start index
72 const windowStart = i - k + 1;
73 if (windowStart < 0) {
74 continue; // Window not yet complete
75 }
76
77 // Balance the sets: move elements from remaining to topX if needed
78 while (remaining.length > 0 && topX.length < x) {
79 const largestRemaining = remaining[remaining.length - 1];
80 xSum += largestRemaining[0] * largestRemaining[1];
81 remaining.pop();
82 topX.push(largestRemaining);
83 topX.sort(comparePairs); // Keep sorted
84 }
85
86 // Balance the sets: move excess elements from topX to remaining
87 while (topX.length > x) {
88 const smallestTop = topX[0];
89 xSum -= smallestTop[0] * smallestTop[1];
90 topX.shift();
91 remaining.push(smallestTop);
92 remaining.sort(comparePairs); // Keep sorted
93 }
94
95 // Add current window's x-sum to result
96 result.push(xSum);
97
98 // Remove the element going out of window
99 removeElement(nums[windowStart]); // Remove old frequency entry
100 const currentFreq = frequency.get(nums[windowStart]) || 0;
101 frequency.set(nums[windowStart], currentFreq - 1); // Decrement frequency
102 addElement(nums[windowStart]); // Add with new frequency
103 }
104
105 return result;
106}
107
Time and Space Complexity
Time Complexity: O(n * k * log(k))
The algorithm uses a sliding window approach with two SortedLists to maintain the top x
elements. For each position in the array:
- The
add()
andremove()
operations are called, each performing operations on SortedList which takeO(log(k))
time in the worst case (since the window size isk
, there are at mostk
distinct elements) - The while loops for balancing between
l
andr
SortedLists run at mostO(k)
times in total across all iterations, with each operation takingO(log(k))
time - For each of the
n - k + 1
windows, we perform:- One
remove()
call:O(log(k))
- One
add()
call:O(log(k))
- Balancing operations: amortized
O(log(k))
- One
Therefore, the overall time complexity is O((n - k + 1) * log(k))
which simplifies to O(n * log(k))
for the main operations. However, in the worst case where rebalancing happens frequently, it could be O(n * k * log(k))
.
Space Complexity: O(k)
The space usage includes:
l
andr
SortedLists: Together they store at mostk
distinct elements (one entry per distinct value in the window), soO(k)
cnt
Counter: Stores at mostk
distinct elements from the current window, soO(k)
ans
array: Storesn - k + 1
elements, soO(n - k + 1)
=O(n)
- Other variables (
s
,i
,j
, etc.):O(1)
The dominant space complexity is O(n)
for the answer array, but if we only consider auxiliary space (excluding the output), it would be O(k)
.
Learn more about how to find time and space complexity quickly.
Common Pitfalls
1. Incorrect Priority Comparison When Adding Elements
The most critical pitfall in this solution is the logic error in the add_element_to_sets
function. The current code has:
if top_x_elements and priority_tuple > top_x_elements[0]: # Add to top_x_elements
This condition is checking if the new element is greater than the minimum element in top_x_elements
, but it's also requiring top_x_elements
to be non-empty. This creates a problem: when top_x_elements
is empty, the element will always go to remaining_elements
, even if it should be in the top set.
Solution: The condition should allow elements to be added to top_x_elements
when it's empty OR when the element has higher priority than the minimum:
if not top_x_elements or priority_tuple > top_x_elements[0]: # Add to top_x_elements
2. Not Handling the Case Where x > Number of Distinct Elements
When the window has fewer than x
distinct elements, all elements should contribute to the x-sum. The current balancing logic might not handle this edge case properly if not carefully implemented.
Solution: Ensure the balancing logic correctly handles this by only enforcing the size limit when there are more than x
distinct elements:
# Only remove excess elements if we have more than x elements
while len(top_x_elements) > x and len(top_x_elements) > 0:
element_to_demote = top_x_elements.pop(0)
current_sum -= element_to_demote[0] * element_to_demote[1]
remaining_elements.add(element_to_demote)
3. Inefficient Element Removal and Re-addition
When sliding the window, the code removes an element and then potentially re-adds it if its count is still positive. This can cause unnecessary operations if the element appears multiple times in the window.
Solution: Only perform removal/addition when the frequency actually changes meaningfully:
# Before removing from window old_count = element_count[leftmost_element] if old_count > 1: # Element still exists in window with reduced frequency remove_element_from_sets(leftmost_element) element_count[leftmost_element] -= 1 add_element_to_sets(leftmost_element) else: # Element is completely removed from window remove_element_from_sets(leftmost_element) element_count[leftmost_element] = 0
4. Missing Zero-Count Check in Helper Functions
The helper functions check if element_count[value] == 0
and return early, but this might not catch all edge cases, especially after decrementing counts.
Solution: Add more robust checking and consider removing elements from the Counter when their count reaches zero:
def remove_element_from_sets(value: int) -> None:
if value not in element_count or element_count[value] == 0:
return
# ... rest of the function
# After decrementing
element_count[leftmost_element] -= 1
if element_count[leftmost_element] == 0:
del element_count[leftmost_element]
5. Tie-Breaking Rule Confusion
The problem states that when two elements have the same frequency, the element with the bigger value is considered more frequent. The tuple comparison (frequency, value)
handles this correctly, but it's easy to mistakenly reverse this order or misunderstand the priority.
Solution: Add clear comments and consider using a named tuple or class for clarity:
from collections import namedtuple ElementPriority = namedtuple('ElementPriority', ['frequency', 'value']) # This ensures that elements are compared first by frequency (ascending), # then by value (ascending) when frequencies are equal
Which data structure is used to implement recursion?
Recommended Readings
https assets algo monster cover_photos stack svg Sliding Window Maximum Monotonic Stack We have an array and a sliding window defined by a start index and an end index The sliding window moves from left of the array to right There are always k elements in the window The window
https assets algo monster cover_photos heap svg Priority Queue and Heap What is the relationship between priority queue and heap Priority Queue is an Abstract Data Type and Heap is the concrete data structure we use to implement a priority queue Priority Queue A priority queue is a data structure
Coding Interview Patterns Your Personal Dijkstra's Algorithm to Landing Your Dream Job The goal of AlgoMonster is to help you get a job in the shortest amount of time possible in a data driven way We compiled datasets of tech interview problems and broke them down by patterns This way
Want a Structured Path to Master System Design Too? Don’t Miss This!