Facebook Pixel

3471. Find the Largest Almost Missing Integer

EasyArrayHash Table
Leetcode Link

Problem Description

You are given an integer array nums and an integer k.

An integer x is called almost missing if it appears in exactly one subarray of size k within nums. A subarray is a contiguous sequence of elements from the array.

Your task is to find the largest almost missing integer from nums. If no such integer exists, return -1.

Let's break down what this means:

  • You need to look at all possible subarrays of size k in the array
  • For each unique integer in these subarrays, count how many subarrays it appears in
  • An integer is "almost missing" if it appears in exactly one of these subarrays
  • Among all almost missing integers, return the largest one

For example, if nums = [1, 2, 3, 4] and k = 2:

  • The subarrays of size 2 are: [1, 2], [2, 3], [3, 4]
  • The integer 1 appears only in [1, 2] (exactly one subarray) → almost missing
  • The integer 2 appears in [1, 2] and [2, 3] (two subarrays) → not almost missing
  • The integer 3 appears in [2, 3] and [3, 4] (two subarrays) → not almost missing
  • The integer 4 appears only in [3, 4] (exactly one subarray) → almost missing
  • The almost missing integers are 1 and 4, so the answer would be 4 (the largest)

The solution handles three cases:

  • When k = 1: Each element forms its own subarray, so we need elements that appear exactly once in the entire array
  • When k = len(nums): There's only one subarray (the entire array), so all elements in it are almost missing, and we return the maximum
  • When 1 < k < len(nums): Only the first and last elements can be almost missing (if they don't appear elsewhere in the array)
Quick Interview Experience
Help others by sharing your interview experience
Have you seen this problem before?

Intuition

The key insight is to understand which elements can possibly be "almost missing" based on the value of k.

Let's think about when an element can appear in exactly one subarray of size k:

  1. When k = 1: Each element forms its own individual subarray. An element appears in exactly one subarray if and only if it appears exactly once in the entire array. This is straightforward - we just need to count occurrences.

  2. When k = n (where n is the array length): There's only one possible subarray - the entire array itself. Every element in the array appears in this single subarray, making all elements "almost missing". We simply return the maximum element.

  3. When 1 < k < n: This is the interesting case. Let's think about which elements can appear in exactly one subarray:

    • For an element in the middle of the array, it will appear in multiple overlapping subarrays of size k. For instance, nums[i] where k-1 ≤ i ≤ n-k will appear in at least k different subarrays.
    • The only elements that have a chance of appearing in exactly one subarray are those at the extreme positions: nums[0] and nums[n-1].
    • nums[0] only appears in the first subarray [0, k-1]
    • nums[n-1] only appears in the last subarray [n-k, n-1]
    • However, if nums[0] appears anywhere else in the array (positions 1 to n-1), it will appear in more than one subarray
    • Similarly, if nums[n-1] appears anywhere else in the array (positions 0 to n-2), it will appear in more than one subarray

This observation drastically simplifies our problem. Instead of checking all possible elements and all possible subarrays (which would be computationally expensive), we only need to:

  • Check if nums[0] appears elsewhere in the array
  • Check if nums[n-1] appears elsewhere in the array
  • Return the maximum among the valid "almost missing" elements

The solution elegantly handles all three cases with minimal computation, avoiding the need to generate and check all subarrays explicitly.

Solution Approach

Based on the case analysis, we implement the solution as follows:

Case 1: When k = 1

  • Each element forms its own subarray of size 1
  • We need to find elements that appear exactly once in the entire array
  • Use a Counter to count the frequency of each element
  • Filter elements with frequency equal to 1
  • Return the maximum among these elements, or -1 if none exist
if k == 1:
    cnt = Counter(nums)
    return max((x for x, v in cnt.items() if v == 1), default=-1)

Case 2: When k = len(nums)

  • The entire array is the only subarray of size k
  • All elements in the array appear in exactly one subarray
  • Simply return the maximum element in the array
if k == len(nums):
    return max(nums)

Case 3: When 1 < k < len(nums)

  • Only nums[0] and nums[n-1] can potentially be almost missing
  • Define a helper function f(k) to check if nums[k] is almost missing:
    • Iterate through the array
    • If nums[k] appears at any other position (i.e., nums[i] == nums[k] where i != k), it's not almost missing, return -1
    • Otherwise, return nums[k]
  • Check both nums[0] (by calling f(0)) and nums[n-1] (by calling f(len(nums) - 1))
  • Return the maximum of the two results
def f(k: int) -> int:
    for i, x in enumerate(nums):
        if i != k and x == nums[k]:
            return -1
    return nums[k]

return max(f(0), f(len(nums) - 1))

The solution efficiently handles all cases with:

  • Time Complexity: O(n) where n is the length of the array
    • For k = 1: O(n) to count frequencies
    • For k = n: O(n) to find the maximum
    • For 1 < k < n: O(n) to check if first/last elements appear elsewhere
  • Space Complexity: O(n) for the Counter in case k = 1, O(1) for other cases

This approach avoids the brute force method of generating all subarrays and checking each element, which would have been O(n * k) time complexity.

Ready to land your dream job?

Unlock your dream job with a 5-minute evaluator for a personalized learning plan!

Start Evaluator

Example Walkthrough

Let's walk through a concrete example to illustrate the solution approach.

Example: nums = [2, 3, 5, 3, 1], k = 3

Since 1 < k < len(nums) (specifically, 1 < 3 < 5), we're in Case 3.

Step 1: Identify which elements can be almost missing

First, let's see all subarrays of size 3:

  • Subarray 1: [2, 3, 5] (indices 0-2)
  • Subarray 2: [3, 5, 3] (indices 1-3)
  • Subarray 3: [5, 3, 1] (indices 2-4)

According to our solution insight, only nums[0] = 2 and nums[4] = 1 can potentially be almost missing because:

  • Elements in middle positions will appear in multiple overlapping subarrays
  • For example, nums[2] = 5 appears in all three subarrays
  • nums[1] = 3 and nums[3] = 3 each appear in at least two subarrays

Step 2: Check if nums[0] = 2 is almost missing

Call f(0):

  • Iterate through the array checking if 2 appears at any position other than index 0
  • Index 0: nums[0] = 2 (this is k itself, skip)
  • Index 1: nums[1] = 3 (not equal to 2)
  • Index 2: nums[2] = 5 (not equal to 2)
  • Index 3: nums[3] = 3 (not equal to 2)
  • Index 4: nums[4] = 1 (not equal to 2)
  • Since 2 doesn't appear anywhere else, return 2

Step 3: Check if nums[4] = 1 is almost missing

Call f(4):

  • Iterate through the array checking if 1 appears at any position other than index 4
  • Index 0: nums[0] = 2 (not equal to 1)
  • Index 1: nums[1] = 3 (not equal to 1)
  • Index 2: nums[2] = 5 (not equal to 1)
  • Index 3: nums[3] = 3 (not equal to 1)
  • Index 4: nums[4] = 1 (this is k itself, skip)
  • Since 1 doesn't appear anywhere else, return 1

Step 4: Return the maximum

Both 2 and 1 are almost missing. Return max(2, 1) = 2.

Let's verify this is correct:

  • 2 appears only in subarray [2, 3, 5]
  • 1 appears only in subarray [5, 3, 1]
  • The largest almost missing integer is indeed 2

Solution Implementation

1class Solution:
2    def largestInteger(self, nums: List[int], k: int) -> int:
3        """
4        Find the largest integer based on position k and uniqueness constraints.
5      
6        Args:
7            nums: List of integers
8            k: Position parameter that determines the algorithm behavior
9          
10        Returns:
11            The largest valid integer based on the constraints, or -1 if none exists
12        """
13      
14        def find_unique_boundary_value(position: int) -> int:
15            """
16            Check if the value at given position is unique in the array.
17          
18            Args:
19                position: Index position to check
20              
21            Returns:
22                The value at position if it's unique, otherwise -1
23            """
24            # Check if this value appears elsewhere in the array
25            for index, value in enumerate(nums):
26                if index != position and value == nums[position]:
27                    return -1  # Value is not unique
28            return nums[position]  # Value is unique, return it
29      
30        # Special case 1: When k = 1, find the maximum value that appears exactly once
31        if k == 1:
32            from collections import Counter
33            frequency_map = Counter(nums)
34            # Find all values with frequency 1 and return the maximum
35            unique_values = (value for value, count in frequency_map.items() if count == 1)
36            return max(unique_values, default=-1)
37      
38        # Special case 2: When k equals array length, return the maximum value
39        if k == len(nums):
40            return max(nums)
41      
42        # General case: Check both boundaries (first and last positions)
43        # Return the maximum of unique values at boundaries
44        first_position_value = find_unique_boundary_value(0)
45        last_position_value = find_unique_boundary_value(len(nums) - 1)
46        return max(first_position_value, last_position_value)
47
1class Solution {
2    private int[] numbers;
3
4    /**
5     * Finds the largest integer based on specific conditions related to parameter k
6     * @param nums The input array of integers
7     * @param k The parameter that determines the search strategy
8     * @return The largest integer that meets the criteria
9     */
10    public int largestInteger(int[] nums, int k) {
11        this.numbers = nums;
12      
13        // Case 1: k equals 1 - find the largest number that appears exactly once
14        if (k == 1) {
15            // Count frequency of each number
16            Map<Integer, Integer> frequencyMap = new HashMap<>();
17            for (int number : nums) {
18                frequencyMap.merge(number, 1, Integer::sum);
19            }
20          
21            // Find the maximum number that appears exactly once
22            int maxUniqueNumber = -1;
23            for (Map.Entry<Integer, Integer> entry : frequencyMap.entrySet()) {
24                if (entry.getValue() == 1) {
25                    maxUniqueNumber = Math.max(maxUniqueNumber, entry.getKey());
26                }
27            }
28            return maxUniqueNumber;
29        }
30      
31        // Case 2: k equals array length - return the maximum element
32        if (k == nums.length) {
33            return Arrays.stream(nums).max().getAsInt();
34        }
35      
36        // Case 3: Check if first or last element is unique and return the larger one
37        return Math.max(checkIfUnique(0), checkIfUnique(nums.length - 1));
38    }
39
40    /**
41     * Checks if the element at the given index is unique in the array
42     * @param targetIndex The index of the element to check
43     * @return The element value if it's unique, -1 otherwise
44     */
45    private int checkIfUnique(int targetIndex) {
46        // Check if the element at targetIndex appears elsewhere in the array
47        for (int i = 0; i < numbers.length; i++) {
48            if (i != targetIndex && numbers[i] == numbers[targetIndex]) {
49                return -1;  // Element is not unique
50            }
51        }
52        return numbers[targetIndex];  // Element is unique
53    }
54}
55
1class Solution {
2public:
3    int largestInteger(vector<int>& nums, int k) {
4        // Case 1: When k equals 1, find the largest number that appears exactly once
5        if (k == 1) {
6            unordered_map<int, int> frequencyMap;
7          
8            // Count the frequency of each number
9            for (int num : nums) {
10                ++frequencyMap[num];
11            }
12          
13            int maxUniqueValue = -1;
14          
15            // Find the maximum value that appears exactly once
16            for (const auto& [value, frequency] : frequencyMap) {
17                if (frequency == 1) {
18                    maxUniqueValue = max(maxUniqueValue, value);
19                }
20            }
21          
22            return maxUniqueValue;
23        }
24      
25        int arraySize = nums.size();
26      
27        // Case 2: When k equals array size, return the maximum element
28        if (k == arraySize) {
29            return ranges::max(nums);
30        }
31      
32        // Case 3: For other values of k, check if first or last element is unique
33        // Lambda function to check if element at given index is unique in the array
34        auto getValueIfUnique = [&](int targetIndex) -> int {
35            for (int i = 0; i < arraySize; ++i) {
36                // If any other element equals the target element, it's not unique
37                if (i != targetIndex && nums[i] == nums[targetIndex]) {
38                    return -1;
39                }
40            }
41            // Element is unique, return its value
42            return nums[targetIndex];
43        };
44      
45        // Return the maximum between the first element (if unique) and last element (if unique)
46        return max(getValueIfUnique(0), getValueIfUnique(arraySize - 1));
47    }
48};
49
1/**
2 * Finds the largest integer that appears exactly once in a subarray of length k
3 * @param nums - The input array of numbers
4 * @param k - The length of the subarray to consider
5 * @returns The largest unique integer in the subarray, or -1 if none exists
6 */
7function largestInteger(nums: number[], k: number): number {
8    // Special case: when k is 1, check each single element
9    if (k === 1) {
10        // Count frequency of each number in the array
11        const frequencyMap = new Map<number, number>();
12        for (const num of nums) {
13            frequencyMap.set(num, (frequencyMap.get(num) || 0) + 1);
14        }
15      
16        // Find the largest number that appears exactly once
17        let maxUniqueNumber = -1;
18        for (const [num, frequency] of frequencyMap.entries()) {
19            if (frequency === 1 && num > maxUniqueNumber) {
20                maxUniqueNumber = num;
21            }
22        }
23        return maxUniqueNumber;
24    }
25
26    const arrayLength = nums.length;
27  
28    // Special case: when k equals array length, return the maximum value
29    if (k === arrayLength) {
30        return Math.max(...nums);
31    }
32
33    /**
34     * Helper function to check if a number at given index is unique in the array
35     * @param index - The index of the number to check
36     * @returns The number if unique, -1 otherwise
37     */
38    const getUniqueNumberAtIndex = (index: number): number => {
39        // Check if the number at index appears elsewhere in the array
40        for (let i = 0; i < arrayLength; i++) {
41            if (i !== index && nums[i] === nums[index]) {
42                return -1; // Number is not unique
43            }
44        }
45        return nums[index]; // Number is unique
46    };
47
48    // Check the first and last elements for uniqueness and return the maximum
49    return Math.max(getUniqueNumberAtIndex(0), getUniqueNumberAtIndex(arrayLength - 1));
50}
51

Time and Space Complexity

The time complexity is O(n), where n is the length of the array nums.

Time Complexity Analysis:

  • When k == 1: The Counter(nums) operation takes O(n) time to count all elements. The subsequent iteration through the counter items and finding the maximum takes at most O(n) time.
  • When k == len(nums): The max(nums) operation takes O(n) time.
  • Otherwise: The function f() is called at most twice (for indices 0 and len(nums) - 1). Each call to f() iterates through the array once, taking O(n) time. Therefore, the total time is O(2n) = O(n).

The space complexity is O(n).

Space Complexity Analysis:

  • When k == 1: The Counter(nums) creates a dictionary that can contain up to n unique elements in the worst case, requiring O(n) space.
  • When k == len(nums): Only O(1) extra space is used for the max operation.
  • Otherwise: The function f() uses O(1) extra space for iteration variables, but no additional data structures are created.
  • Overall, the worst-case space complexity is O(n) due to the Counter when k == 1.

Learn more about how to find time and space complexity quickly.

Common Pitfalls

1. Misunderstanding the Problem Definition

Pitfall: Many developers initially misinterpret what "almost missing" means. They might think it refers to integers that are missing from the array but close in value, or that it means appearing in "almost all" subarrays.

Solution: Carefully read that "almost missing" means appearing in exactly one subarray of size k. Draw out examples with small arrays to verify understanding before coding.

2. Incorrect Handling of Edge Cases

Pitfall: Failing to properly handle the special cases when k = 1 or k = len(nums). Some might try to use the general case logic for all scenarios, which leads to incorrect results.

Solution: Explicitly check and handle these special cases first:

  • When k = 1: Look for elements appearing exactly once in the entire array
  • When k = len(nums): All elements are almost missing (they all appear in exactly one subarray)

3. Off-by-One Errors in Boundary Checking

Pitfall: When checking if boundary elements (nums[0] and nums[n-1]) appear elsewhere, using incorrect index ranges or conditions like i > 0 instead of i != k.

Solution: Use clear condition i != k when checking if an element at position k appears elsewhere:

for i, x in enumerate(nums):
    if i != k and x == nums[k]:  # Correct: excludes the position we're checking
        return -1

4. Forgetting to Handle Empty Results

Pitfall: When no almost missing integers exist (especially in the k = 1 case), not returning -1 properly. Using max() on an empty sequence causes a ValueError.

Solution: Always use default=-1 parameter with max() when the sequence might be empty:

return max((x for x, v in cnt.items() if v == 1), default=-1)

5. Inefficient Brute Force Approach

Pitfall: Attempting to generate all subarrays of size k and count occurrences for each element, resulting in O(n*k) time complexity.

Solution: Recognize the pattern that only boundary elements can be almost missing when 1 < k < n, reducing the problem to O(n) time complexity by checking just two elements.

6. Import Statement Placement

Pitfall: Importing Counter inside the function only when k = 1, which can cause NameError if the import statement is moved or forgotten.

Solution: Import at the beginning of the solution or at the module level:

from collections import Counter

class Solution:
    def largestInteger(self, nums: List[int], k: int) -> int:
        # Rest of the code
Discover Your Strengths and Weaknesses: Take Our 5-Minute Quiz to Tailor Your Study Plan:

What's the output of running the following function using the following tree as input?

1def serialize(root):
2    res = []
3    def dfs(root):
4        if not root:
5            res.append('x')
6            return
7        res.append(root.val)
8        dfs(root.left)
9        dfs(root.right)
10    dfs(root)
11    return ' '.join(res)
12
1import java.util.StringJoiner;
2
3public static String serialize(Node root) {
4    StringJoiner res = new StringJoiner(" ");
5    serializeDFS(root, res);
6    return res.toString();
7}
8
9private static void serializeDFS(Node root, StringJoiner result) {
10    if (root == null) {
11        result.add("x");
12        return;
13    }
14    result.add(Integer.toString(root.val));
15    serializeDFS(root.left, result);
16    serializeDFS(root.right, result);
17}
18
1function serialize(root) {
2    let res = [];
3    serialize_dfs(root, res);
4    return res.join(" ");
5}
6
7function serialize_dfs(root, res) {
8    if (!root) {
9        res.push("x");
10        return;
11    }
12    res.push(root.val);
13    serialize_dfs(root.left, res);
14    serialize_dfs(root.right, res);
15}
16

Recommended Readings

Want a Structured Path to Master System Design Too? Don’t Miss This!

Load More