Types of Dynamic Programming Questions
Here's the breakdown. We also highlighted the keywords that indicate it's likely a dynamic programming problem.
Sequence
This is the most common type of DP problem and a good place to get a feel of dynamic programming. In the recurrence relation,dp[i]
normally means max/min/best value for the sequence ending at index i.
- House robber - find maximum amount of loot
- Coin change - find minimum amount of coins needed to make up an amount
Grid
This is the 2D version of the sequence DP. dp[i][j]
means max/min/best value for matrix cell ending at index i, j.
- Robot unique paths - number of ways for robot to move from top left to bottom right
- Min path sum - find path in a grid with minimum cost
- Maximal square - find maximal square of 1s in a grid of 0s and 1s
Dynamic number of subproblems
This is similar to "Sequence DP" except dp[i]
depends on a dynamic number of subproblems, e.g. dp[i] = max(d[j]..) for j from 0 to i
.
- Longest Increasing Subsequence - find the longest increasing subsequence of an array of numbers
- Buy/sell stock with at most K transactions - maximize profit by buying and selling stocks using at most K transaction
Partition
This is a continuation of DFS + memoization problems. These problems are easier to reason and solve with a top-down approach. The key to solve these problems is to draw the state-space tree and then traverse it.
- Decode ways - how many ways to decode a string
- Word break - partition a word into words in a dictionary
- Triangle - find the smallest sum path to traverse a triangle of numbers from top to bottom
- Partition to Equal Sum Subsets - partition a set of numbers into two equal-sum subsets
Two Sequences
This type of problem has two sequences in their problem statement. dp[i][j]
represents the max/min/best value for the first sequence ending in index i and second sequence ending in index j.
- Edit distance - find the minimum distance to edit one string to another
- Longest common subsequence - find the longest common subsequence that is common in two sequences
Game theory
This type of problem asks for whether a player can win a decision game. The key to solving game theory problems is to identify winning state, and formulating a winning state as a state that returns a losing state to the opponent
- Coins in a line
- Divisor game
- Stone game